
The design of Maple’s sum-of-products and POLY data
structures for representing mathematical objects.

Michael Monagan and Roman Pearce
Center for Experimental and Constructive Mathematics,

Simon Fraser University, Burnaby, British Columbia.

EMail: mmonagan@cecm.sfu.ca and rpearcea@cecm.sfu.ca

Abstract

The principal data structure in Maple used to represent polynomials and general
mathematical expressions involving functions like

√
x, sinx, e2x, y′(x) etc., is known to

the Maple developers as the sum-of-products data structure. Gaston Gonnet, as the
primary author of the Maple kernel, designed and implemented this data structure
in the early 80s. As part of the process of simplifying a mathematical formula, he
represented every Maple object and every sub-object uniquely in memory. This makes
testing for equality, which is used in many operations, very fast. In this article, on
occasion of Gaston’s retirement, we present details of his design, its pros and cons, and
changes we have made to it over the years. One of the cons is the sum-of-products
data structure is not nearly as efficient for multiplying multivariate polynomials as
other special purpose computer algebra systems. We describe the new data structure
called POLY which we added to Maple 17 (released 2013) to improve performance for
polynomials in Maple, and recent work done for Maple 18 (released 2014).

1 Introduction

The sum-of-products data structure is the main data structure Maple uses to represent
mathematical formulas or expressions. As a data structure, it is directed acyclic graph
in which each node in the graph is encoded by a vector (array) of machine words. The
nodes represent numbers, sums, products, powers, functions, etc. We refer to the nodes as
sub-expressions and sub-objects.

A unique feature of Maple among computer algebra systems is that almost all objects
and sub-objects in Maple are represented uniquely in memory. This is done using hashing

1

after algebraic rules have been used to simplify an object. As a consequence, Maple can
test two objects for equality using a pointer comparison which costs one clock cycle. This
makes many Maple operations very efficient. This feature and the sum-of-products data
representation are mentioned only briefly by Char, Geddes, Gentleman and Gonnet in [2],
the first paper on the design of Maple. Details are not presented and the disadvantages of
these design decisions are not discussed.

In this article we provide details showing how Maple represents objects and how this
sharing of objects and sub-objects is implemented in Section 2. In Section 3 we discuss two
advantages of this design and in Section 4 three disadvantages. We focus on problems with
this design and the solutions that we and others have made to address the problems. A
fourth disadvantage is that polynomial multiplication and division which are fundamental to
the overall efficiency of a computer algebra system like Maple are relatively slow compared
with special purpose computer algebra systems like Magma [1] and Singular [7] which have
dedicated polynomial data structures. In Section 5 we will give details of our new polynomial
data structure that we have added to the Maple 17 to address this.

2 Maple’s Sum-Of-Products Representation

Figure 1 below shows the default polynomial data structure in Maple 16 and all previous
versions for the polynomial f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5. It is a “sum-of-products”
where each monomial in the polynomial is stored as a separate Maple object, a PROD object.

SUM 11

PROD 7 6x 1 6y 3 6z 1

6

r 9

PROD 5 6y 3 6z 2

6

r −4

PROD 7 6x 1 6y 2 6z 1

6

r −6

PROD 3 6x 3

6r −8 1 −5

Figure 1: Maple’s sum-of-products representation for
the polynomial 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5.

Each object in Maple has a header word which encodes the type of the object and its
length in machine words. Thus the SUM in Figure 1 occupies 11 words of memory. The
remaining words of each object contain the content of the object. For a SUM, this is a

2

sequence of (monomial,coefficient) pairs and for a PROD, it is a sequence of (base,exponent)
pairs as shown in Figure 1. The coefficients and exponents must be numbers, that is, integers,
fractions, decimal numbers, or complex numbers.

Not shown explicitly in Figure 1 is how the variables x, y, z are represented. What is
stored in the PROD objects are pointers (indicated by ↑) to NAME objects which are represented
like this NAME 3 nil x . A variable is a NAME whose second word is its value which is nil by
default which means the variable has not been assigned a value. The third and subsequent
words store the characters of the variable ending with at least one 0 byte.

Small integers are stored immediately in the data structure. A large integer is stored as
a pointer to a separate INTPOS or INTNEG object. Small integers are encoded as follows to
distinguish them from pointers which have a 0 least significant bit. On a 64 bit computer,
if an integer x satisfies −262 < x < 262, then x is stored as 2x + 1 which has 1 as the least
significant bit. We call such an integer an immediate integer.

Looking at the data structure, consider what Maple must do to compute for example,
the degree of the polynomial in x and {x, y, z} the set of all the variables in the polynomial.
If the polynomial has t terms in n variables, both operations are O(nt) because Maple must
traverse the entire data structure to determine the degree in x or the set of variables. In
fact, almost all Maple operations are at least O(nt) because the contents of a Maple sum-
of-products object are unknown.

Figure 2 below shows how Maple represents the expression g = 2x2 sinx− 3 sinx cosx+
5 cosx.

SUM 7

PROD 5 6x 2 6sinx 1

6

r 2

PROD 5 6sinx 1 6cosx 1

6r −3 6cosx 5

Figure 2: The sum-of-products representation for g = 2x2 sinx− 3 sinx cosx+ 5 cosx.

Notice that the top two levels of the data structure are SUM and PROD objects. Figure 3
shows how the functions sinx and cosx are represented. Note that in Figure 2 there are
two pointers to sinx and two pointers to cosx. Are there two copies of the sin x and two
copies of cosx objects? No. When the the SUM object in Figure 2 is simplified, if two copies
of sinx and cosx are identified, only the first is kept. This unique representation of objects
is automatic. It clearly saves space for formulas involving functions. It is less obvious that
this will save space for polynomials. Looking back at Figure 1, except for the sharing of
the variables, there are no common subexpressions that can be shared. However, if you are
computing with several polynomials in x, y, z then very likely some or many of the monomials
in x, y, z will appear repeatedly in the set of polynomials. They will all be shared.

3

FUNCTION 3 6sin -r EXPSEQ 2 6x

FUNCTION 3 6cos �
��
�*r

Figure 3: Maple’s data representation for the functions sinx and cos x.

2.1 Unique representation using hashing.

We provide details on how hashing is used in simplification to identify equal objects and how
unique representation of objects is in turn exploited to to speed up simplification. Suppose
the user inputs the polynomial f = 3x2 +xy2 + 2y2x+ 3/2y2−x2 to Maple. It will be stored
as

SUM 11 ↑ x2 3 ↑ xy2 1 ↑ y2x 2 ↑ y2 3/2 ↑ x2 −1 .

How does Maple simplify it? It uses the following procedure.

Step 1 (simplify terms recursively)

Simplify the terms x2, xy2, yx2, y2, x2 but not the coefficients 3, 1, 2, 3/2,−1 recursively.
To improve efficiency, Maple uses one bit in the header word of each object to indicate
whether it has been simplified already. After this step each term will be represented
uniquely, that is, there will be one copy of the monomial x2 stored as PROD 3 ↑ x 2

and the two pointers in the SUM to x2 will be the same.

Step 2 (add coefficients)

Add coefficients of like terms. For small polynomials with few terms Maple does this
without sorting. For larger polynomials Maple sorts the SUM on the monomials, that is,
on the pointers treating them as unsigned integers so that like terms are now adjacent.

SUM 11 ↑ x2 2 ↑ x2 −1 ↑ xy2 1 ↑ xy2 2 ↑ y2 ↑ 3/2 .

Sorting by pointers is very fast. In other computer algebra systems, to compare mono-
mials one would have to use a general comparison. This is one reason why Maple is
relatively fast at polynomial arithmetic.

Now we add the coefficients of like terms in linear time keeping only terms with non-
zero coefficient. After disposing of the memory no longer needed we obtain

SUM 7 ↑ x2 1 ↑ xy2 3 ↑ y2 ↑ 3/2 .

4

Step 3 (simplify coefficients recursively)

Simplify the coefficients which are not small integers recursively so that they are
also uniquely represented. In our example the fraction 3/2 which is represented by
RATIONAL 3 3 2 is simplified.

Step 4 (uniquification)

Compute a hash value for the SUM object. Do this using the numerical values of the
coefficients and monomials treating pointers as unsigned integers. The hash function
must be commutative across the terms of the sum so that, for example, hash(2x+3y) =
hash(3y + 2x). Similarly the hash function for a product x2y3 must be commutative
across the factors of the product so that hash(x2y3) = hash(y3x2).

Search the simpl table, a global hash table of all Maple objects to see if this new
object already exists. If it has the same hash value as the hash value of an object in
the simpl table, then compare the terms of the two sums by comparing pointers and
immediate integers.

If this object already exists in the simpl table return a pointer to the copy in the
simpl table. Otherwise set a bit in the header word to indicate that this object has
been simplified, insert this object into the simpl table and return this object.

2.2 Hashing.

To store objects uniquely in memory, Maple maintains a hash table of all objects called the
simpl table. The hash function for SUMs and PRODs is a function of the pointers. So it too
takes advantage of unique representation. The hash function used for a SUM and PROD object
in Maple 6 is shown in the following C code snippet. Here s is the object and the variables
r, L, i, p are signed integers, 32 bits on a 32 bit machine and 64 bits on a 64 bit machine.

case SUM_CASE:

case PROD_CASE:

r = ID_DAG(s);

L = LENGTH(s);

/* commutative signature function. */

for(i=1; i < L; i+=2) {

p = HASHMUL * I(s[i]) + I(s[i+1]);

p += p >> 4;

r += p * (2*p+1);

}

break;

5

In this code the LENGTH function returns the length of the object in words, the ID DAG
function returns the bit encoding of the type of the object, the macro I(...) is a cast to an
integer type, and the subscripts s[i] and s[i+ 1] access a (monomial,coefficient) pair.

The value of the constant HASHMUL is 1027 which is a pseudo primitive root (has
maximal order) mod 232 and 264. A comment in the code says that 1664525 was previously
used but changed to 1027 which in binary has 3 one bits so that multiplication by 1027 can
be optimized to shifts and adds for RISC machines. The constant 1664525 is taken from
Knuth’s table of results of the spectral test on page 102 of [8].

Now this hash function is commutative on terms of a sum and factors of a product,
so that hash(2x + 3y) = hash(3y + 2x) and hash(x2y3) = hash(y3x2), but unlike the orig-
inal hash function in [2], it is not commutative across the coefficients and exponents, i.e.,
hash(2x+3y) 6= hash(3x+2y) and hash(y3x2) 6= hash(y2x3) with high probability. The hash
function used prior to Maple 4.2 was commutative on the coefficients and terms in a sum
and the exponents and terms in a product. We noticed this was a problem for Vandermonde
determinants and changed the hash function to use the above code. We explain the problem.

Let Vn be the the n× n Vandermonde matrix in n variables. For example here is V4

V4 =


1 w w2 w3

1 x x2 x3

1 y y2 y3

1 z z2 z3


Maple’s determinant command computes the det(Vn) in expanded form, that is, obtaining

w3x2y − w3x2z − w3xy2 + w3xz2 + · · · − xy3z2 + xy2z3

The determinant in this expanded form has n! terms. In the sum-of-products representation
these terms look like PROD 7 w 3 x 2 y 1 . Notice that in det(V4) there are (n− 1)!
PRODs which are permutations of the exponents 1, 2, 3 and variables x, y, z which, using the
original hash function, all hash to the same value, i.e., {w3x2y1, w3x1y2, w2x3y1, w2x1y3, w1x3y2, w1x2y3}
all hash to the same value!

2.3 Programming with Maple’s sum-of-products representation.

The two Maple commands op(i,expr) and nops(expr) which stand for operand and number
of operands respectively give the Maple programmer the ability to pick apart any Maple
expression (object). The command op(0,expr) returns the type of the object. The command
nops(expr) returns the number of operands (elements) of the object and op(i,expr) returns
the i’th operand. The following table shows how this works.

6

f op(0,f) nops(f) op(1,f) op(2,f)

2x+ 3y + z ‘+‘ 3 2x 3y
x3yz ‘*‘ 3 x3 y
[x, x2] list 2 x x2

2/3 Fraction 2 2 3

3 Some Advantages

3.1 Algebraic Numbers and RootOfs

In [5] Geddes, Gonnet and Smedley implemented a heuristic algorithm for computing a GCD
of two polynomials over an algebraic number field. The Maple group needed to decide how
we would represent algebraic numbers in Maple. Gaston proposed and implemented the
following design which uses a Maple function as the representation.

If α is an algebraic number with minimal polynomial m(z) then the Maple user can
input α to Maple as a RootOf(m(z), z0) or RootOf(m(z), a..b) or simply RootOf(m(z)) to
represent any root of m(z). Here z0 is input as a (complex) floating point approximation to
α with sufficiently many decimal places to distinguish it from the other roots and a..b is real
interval (or complex box) which isolates α from the other roots. For example, the algebraic
number

√
2 with minimal polynomial z2 − 2 may be input as

> alpha := RootOf(z^2-2,1.4..1.5);

α := RootOf(Z2 − 2, 1.4 .. 1.5);

> simplify(alpha^3);

2RootOf(Z2 − 2, 1.4 .. 1.5)

> evalf(alpha);

1.414213562

Notice that the representation for the algebraic number α is a function with the name
RootOf and arguments Z2 − 2 and 1.4..1.5 so that Maple replaced z by the canonical Z.
One can program with this in Maple using the op-nops model as follows.

> op(0,alpha), nops(alpha), op(1,alpha), op(2,alpha);

RootOf, 2, Z 2 − 2, 1.4 .. 1.5

At one point in the discussion Gaston suggested that Maple store the information about
α in a global table and use a NAME α to represent the algebraic number. This proposal
was rejected because it would break Maple’s model for option remember (see Section 3.2).
Consider the polynomial f = αx2 − 3α + 1 in Maple.

7

> f := alpha*x^2-3*alpha+1;

RootOf
(

Z 2 − 2, 1.4 .. 1.5
)
x2 − 3 RootOf

(
Z 2 − 2, 1.4 .. 1.5

)
+ 1

Because of the unique representation of all Maple objects, only one copy of the RootOf is
stored, so this representation is efficient. However, the display is poor. In some versions
of Maple, including the command line interface, Maple will automatically identify common
subexpressions in the output and display them using %1,%2, . . . labels if they appear 3
or more times in the output. Maple will display those common subexpressions like this
%1 = RootOf(Z2 − 2, 1.4 .. 1.5) immediately below the output. This general facility is
helpful in reducing the size of the output. However, Maple needs a nice way to display
formulas involving RootOfs, preferably allowing us to display them as greek letters which is
standard for algebraic numbers. We added a general alias mechanism for this purpose. The
command alias(x=y) means, when user inputs x, Maple gets y, and when Maple outputs y,
the value x is displayed to the user. We illustrate this by redoing the example.

> alias(beta=RootOf(z^2-2,1.4)):

> f := beta*x^2 - 3*beta + 1;

f := β x2 − 3βx+ 1

> g := evala(Expand(f*f));

g := 2x4 + 2 βx2 − 12x2 − 6 β + 19

> evalf(g);

2.0x4 − 9.171572876x2 + 10.51471863

Aliasing is implemented by simple substitution, i.e., by subs(x=y,expr) on input and
subs(y=x,expr) on output. The subs command scans the input expression for x, replacing
it by y. Substitution is linear time because there is a unique copy of x and comparison of
objects in the expression with x is a pointer comparison.

8

3.2 Remember tables and option remember.

At GNOME 2014, in his talk, Gaston presented option remember as one of his favourite
features of Maple. This feature, mentioned in the 1983 paper [2], has been refined and
extended in the years since. Consider the following Maple function for computing the n’th
Fibonacci number Fn using the recurrence Fn = Fn−1 + Fn−2 with initial values F0 = 0 and
F1 = 1.

F := proc(n::nonnegint)

if n=0 then 0 elif n=1 then 1 else F(n-1)+F(n-2) end if;

end;

Every computer scientist knows that this code is terrible. The two recursive calls mean
that the cost of computing Fn is O(2n) function calls, e.g., computing F30 does 2692537
function calls. But, by simply adding option remember to this Maple code as shown below,
the number of function calls is reduced to n.

F := proc(n::nonnegint)

option remember;

if n=0 then 0 elif n=1 then 1 else F(n-1)+F(n-2) end if;

end;

The way option remember works is as follows. Associated with this Maple procedure is a
hash table called a remember table. When the function F is called with a given argument
n, the remember table is searched for an entry with key n. If not present, the code in the
Maple procedure is executed to compute the value of Fn. Before the value is returned, the
pair (n, Fn) with key n is inserted into the remember table. If present, the value Fn is
retrieved from the remember table and returned. Therefore the code for a Maple procedure
with option remember is executed once for a given argument sequence.

For Maple 4.2 the the first author added a syntactically nicer version of option remember
based on assignment. The following Maple code is equivalent to the previous version of F
with option remember. It makes the initial values explicit.

F := proc(n::nonnegint) F(n) := F(n-1)+F(n-2) end;

F(0) := 0;

F(1) := 1;

The remember table is created when the first assignment F(0) := 0; is executed. The only
values stored in the remember table are the values that are explicitly assigned. This gives

9

the user the ability to selectively remember values. This way of using a remember table
makes F look more like a table than a function. It allows one to define a discrete function
as as a table where associated with the table is a Maple procedure that is used to compute
missing values from the table on demand. Two questions need to be asked about option
remember. First, how efficient is it and second, how useful is it?

How efficient is a remember table?

A remember table is a Maple hash table. When f(x) := y is computed, (more generally
when f(x1, x2, ..., xn) := (y1, y2, ..., ym) is computed), the pair (x, y) with key x is stored in
the remember table. Because Maple stores unique values of objects in memory, the hash
function used for the key x is the address of x. Thus the cost of the hash function is O(1).
In a system which does not store unique copies of objects, hashing and testing for equality
would be at least linear in the size of the object x which might be more expensive than the
cost of computing f(x). We have measured actual the cost of using option remember in
Maple by doing the following experiment.

> n := 10^6:

> st := time(): for i to n do i od: looptime := time()-st;

> g := proc(x) option remember; x end;

> st := time(): for i to n do g(i) od: gcomptime := time()-st-looptime;

> st := time(): for i to n do g(i) od: gremembertime := time()-st-looptime;

> f := proc(x) x end;

> st := time(): for i to n do f(i) od: fcomptime := time()-st-looptime;

On an AMD 248 Opterion at 2.2GHz we get the following timings (in cpu seconds)
averaged on 3 runs; looptime = 0.186s, gcomptime = 1.899s, gremembertime = 1.163s, and
fcomptime = 1.144s. Thus the cost of inserting into the remember table is less the the
cost of executing a Maple procedure and looking up a remember table is about the same as
executing a Maple procedure call.

The fact that the cost of adding option remember to a function is very low has led to
a proliferation of code in the Maple library that uses option remember. For example, the
ifactor and factor commands in Maple which factor integers and polynomials respectively,
have option remember. Adding option remember also has a space cost. For each entry (x, y)
that is remembered, Maple must insert it into the remember table which costs asymptotically
two words of memory to store the pair (x, y). To prevent Maple from running out of memory,
if option system is also added, when garbage collection is triggered, an entry (x, y) is deleted
from a remember table if no live objects reference both x and y. Both ifactor and factor

have option system. Another feature added to Maple 10 in 2005 to prevent the remember
table from getting too big is option cache(n) which creates a remember table with a limit
on the number of entries set at n.

10

What does option remember really buy us?

Many functions in mathematics have recursive definitions. Examples include the Chebyshev
polynomials Tn(x) which satisfy Tn(x) = 2xTn−1(x)− Tn−2(x) and the binomial coefficients(
n
k

)
which satisfy

(
n
k

)
= n−k+1

k

(
n
k−1

)
. This remembering of values previously computed means

that if the Maple user does a computation like

> n := 14;

> add(k*binomial(n,k), k=1..n);

which computes
∑n
k=0 k

(
n
k

)
, the total cost of computing this sum is O(n) integer operations.

The user automatically gets to use recursive definition in an optimal way.
Just adding option remember makes coding these functions easy. The many refinements to

the basic option remember facility reflect the large number of applications where remember-
ing values is useful in Maple. As a serious application, we present a compact implementation
of Shanks’ baby-step-giant-step algorithm for computing a discrete logarithm in the integers
modulo p.

Suppose α is a generator of the integers modulo p, a prime. The discrete logarithm
problem is, given 0 < y < p, solve

y = αx mod p

for x, that is, compute the discrete logarithm x = logα y. A simple way to find x is to
enumerate the powers of α

1, α, α2, α3, ..., αx = y

until we get to y. Equivalently we can multiply y by α−1 and compute

y, yα−1, yα−2, ..., yα−x = 1

until we get to 1. Both approaches do (p − 1)/2 multiplications on average. Letting m =
b√p− 1c Shanks’ baby-step giant-step algorithm pre-computes and stores the m powers

α0 = 1, αm, α2m, ..., αm(m−1)

usingO(
√
p) multiplications. To compute logα y, when computing the sequence y, yα−1, yα−2, . . .

Shank’s algorithm stops as soon as one of the pre-computed powers is found in this sequence.
This reduces the cost of computing logα y to O(

√
p) multiplications. One must be able to

search the table of pre-computed powers efficiently. In a typical presentation of the algo-
rithm, e.g., Stinson [12], one sorts the powers and uses binary search. We offer the following
elegant Maple solution which defines the function LOG and stores m pre-computed powers in
LOG’s remember table and hence uses hashing to search for them which means our solution
is not only incredibly short, but is also O(

√
p) instead of O(

√
p log p).

11

Shanks := proc(p::prime,alpha::posint)

local invalpha,LOG,m,am,pow,i;

invalpha := 1/alpha mod p;

LOG := proc(y) 1+LOG(y*invalpha mod p) end;

LOG(1) := 0;

m := isqrt(p-1);

am := alpha &^ m mod p;

(pow,i) := (1,1);

for i while i*m<p-1 do

pow := am*pow mod p;

LOG(pow) := i*m; # record that LOG(alpha^(im)) = im

end do;

return LOG;

end;

4 Some Disadvantages

4.1 Sorting by address is not nice!

Because terms in large sums and elements of sets are sorted by address, the order of the
terms in a sum and elements of a set will appear in random looking order. The expanded
polynomial below is an example. The set {1

3
, 2
3
, 1
4
} could display as {1

3
, 2
3
, 1
4
} in one Maple

session but as {1
4
, 2
3
, 1
3
} in another. Any permutation is possible. It simply depends where

in memory the fractions are first created. This has been a very annoying feature for Maple
users.

The solution for sets, finally introduced in Maple 13 in 2009, is to sort the elements of
a set in-place by a natural ordering and not by address, which of course is more expensive
than sorting by address.

The solution for polynomials introduced for Maple 4 was to provide the user with a
sort command that sorts the terms of a polynomial (negative and fractional exponents are
allowed) in descending order. Several orderings are supported. Lexicographical order is the
default. So sort changes the unique representation of the polynomial without changing it’s
hash value. We illustrate the problem and solution from Maple 16 or prior releases. Note
that because the sort command operates in place, the value of op(i,%) may change. We
remark that there is no technical reason why polynomials (monomials and sums) could not
be sorted automatically using say a graded monomial ordering. It’s just more expensive than
sorting by address.

> f := expand((x+1+z+y)^3);

12

f := 1 + 3x+ 3z+ 3y+ 3x2 + 6xz+ 6xy+ 3z2 + 6zy+ 3y2 + 3x2z+ 3x2y+ 3xz2 + 3xy2 +
3z2y + 3zy2 + x3 + z3 + y3 + 6xzy

> sort(f,order=plex(x,y,z));

x3 + 3x2y+ 3x2z+ 3x2 + 3xy2 + 6xyz+ 6xy+ 3xz2 + 6xz+ 3x+ y3 + 3y2z+ 3y2 + 3yz2 +
6yz + 3y + z3 + 3z2 + 3z + 1

> op(1,f);

x3

4.2 Building up a sum, product, set, or list is O(n2).

In Maple, sums, products, sets and lists are all represented using vectors. We have already
seen examples of sums and products in Figures 1 and 2. The list [1, 2, 3, 4] and set {1, 2, 3, 4}
are represented as LIST ↑ s and SET ↑ s respectively where s is the sequence

EXPSEQ 5 1 2 3 4 .

Very often Maple users build sums, products, lists, and sets one item at a time. For example,
to construct the polynomial 1+2x+3x2+4x3+. . .+nxn one obvious solution is the following
loop.

f := 0;

for i to n do f := f + i*x^i end do;

As a second example, given a set S of n functions S = {f1(x), f2(x), . . . , fn(x)} one could
construct the set of derivatives using

T := {}; # empty set

for f in S do T := T union {diff(f,x)} end do;

In both cases the cost is O(n2) that is quadratic in n instead of O(n log n). This is
because these loops are creating intermediate sums (sets) of size 1, 2, 3, 4, . . . , n − 1 which
are all represented by vectors. Because Maple uses vectors, and because in a Maple session
all intermediate objects are simplified and uniquely represented, Maple cannot change an
object.

13

Is there a way to construct a sum of n terms or a set of n elements O(n log n) in Maple?
Yes. The Maple designers have added several commands including map, seq, add, mul to
enable the user to do this. The easiest way to create the sum 1 + 2x + 3x2 + . . . + nxn in
O(n log n) time in Maple is to use the command add(i*x^i,i=1..n) which builds the SUM

in the Maple kernel without creating and simplifying intermediate sums. The easiest way to
differentiate the functions in the set S in linear time is to use the seq command like this: T

:= seq(diff,t,x),t in S) or, to use the map command like this: T := map(diff,S,x). In
general one can compute and store a sequence of objects in an array or hash table and then
convert it to a sum (or product or set or list). We illustrate by generating n monomials xr

where r is chosen at random from [0, 103) and putting them into a set S where the set is a
hash table with the monomials as keys.

R := rand(10^3); # random number generator on [0,10^3)

S := table(); # create an empty hash table

for i to n do r := R(); S[x^r] := 1; end do;

S := {indices(S,nolist)}; # extract sequence of keys of S

But these solutions are not entirely satisfactory since the Maple user must be aware of the
quadratic cost of coding using the simple for loop approach and know to avoid that.

How serious is this problem? We think it is quite serious since we have seen almost every
Maple user make this mistake at some point. This problem is not unique to Maple. Other
computer algebra systems, including Magma, Mathematica and Singular, also use vectors to
represent objects and hence have the same efficiency problem. To verify this we have timed
Magma, Maple, Mathematica and Singular on adding a term to a polynomial, and inserting a
new element into a list and set in Appendix A. That all systems have this quadratic problem
is a little surprising since there’s really no reason why one could not in Mathematica, Magma
and Singular use a balanced binary search tree to represent a set or terms in a polynomial
to make insertion O(log n) instead of O(n). We presume the reason it is not done in these
other systems is because the designers did not want to allow destructive (inplace) operations
on basic objects. But why aren’t efficient alternatives provided and advertised?

4.3 DAG representations need caches to be efficient.

Consider the following Maple session where we create the expressions f = 2x2 sinx −
3 sinx cosx+ 5 cosx and g = βy2 − 3β + 1 where β = RootOf(z2 − 2, 1.4).

> f := 2*x^2*sin(x)-3*sin(x)*cos(x) + 5*cos(x);

f := 2x2 sin (x)− 3 sin (x) cos (x) + 5 cos (x)

14

> beta := RootOf(z^2-2,1.4);

β := RootOf
(

Z 2 − 2, 1.4
)

> g := beta*y^2+3*beta+1;

RootOf
(

Z 2 − 2, 1.4
)
y2 + 3 RootOf

(
Z 2 − 2, 1.4

)
+ 1

In both cases, because functions are represented uniquely, the sum-of-products represen-
tation is compact. But, consider what these Maple commands must do

> degree(f,y), degree(g,y);

0, 2

> evalf(g,10);

1.414213562 y2 + 5.242640686

When the degree and evalf commands scan the expressions f and g they see sinx twice,
cosx twice and β twice. The degree command must check that the arguments of the functions
sinx and cosx and β do not depend on y. If they do then the degree function will return
FAIL. In this case this is not very expensive. However, in evaluating the RootOf to a decimal
number, we do want to avoid doing this more than once since it involves computing a root of
a polynomial to a given precision. In principle, all Maple commands like degree and evalf

could benefit from using a cache or remember table to avoid recomputation when there are
common subexpressions present.

For the evalf(expr,d) command, Maple has always had a dedicated remember table
which depends on the precision d (digits). Thus when we ask to compute β to 10 digits of
precision, if it was previously computed to 10 or more digits of precision, the value stored in
the remember table is retrieved and truncated to the requested precision. Other remember
tables and caches have been added to various Maple kernel commands but not in a systematic
way. A simple most recently used cache, even if small and even if only used for functions,
can be very effective. Moreover, because of Maple’s unique representation of objects, testing
for equality with an object in the cache is a pointer comparison, so maintaining a small cache
can be done very efficiently. Perhaps such caches should be added.

15

5 Efficient Polynomial Representations

What is the most important operation or family of operations to get fast in a computer
algebra system? We argue that polynomial multiplication and it’s sister operation polyno-
mial division are important because firstly, unlike operations like addition and differentiation
which are linear in the number of terms, multiplication and division are non linear in the
number of terms and secondly, many algorithms in computer algebra systems do many poly-
nomial multiplications and divisions. Examples include algorithms for factoring polynomials
(see Geddes et. al. [4]) and algorithms for computing determinants of matrices of polyno-
mials (see Gentleman and Johnson [6]).

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Figure 5: Maple’s sum-of-products representation.

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Figure 6: Singular’s linked list representation.

Figure 5 and 6 show Maple and Singular’s representation for the polynomial f = 9xy3z−
4y3z2− 6xy2z− 8x3− 5. Looking at Maple’s data structure, to multiply two monomials e.g.
xy2z × xy3 the reader can see that Maple must allocate a piece of storage large enough to
store the result xy5z then go through both monomials adding exponents of like variables.
Since exponents can be fractions, there is a function call to decide how to add the exponents.
After the product xy5z is created, it is simplified and hashed to see if it is in Maple’s simpl
table as described in Section 2.1. We estimate that this takes over 200 cycles to multiply
two monomials in 3 variables.

Multiplication in Singular is simpler. Again, a piece of storage must be allocated, but its
size is known in advance. Then a simple loop adds the exponents which must be machine

16

integers in Singular. We estimate that this can be done in about 50 cycles and as a conse-
quence Singular is likely to be about about four times faster than Maple at multiplication
and division of polynomials in 3 variables. The data in Table 1 confirms this.

5.1 The POLY data structure in Maple 17

Figure 7 below shows the new POLY data structure (see [10]) that we put into Maple 17 to
improve performance for polynomials.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Figure 7: Maple 17’s new POLY data structure for
the polynomial f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5.

It encodes the monomials xiyjzk in single words of memory.

The first word is a header word, which encodes the length and type of the object. The
second word points to the variables, which are sorted in Maple’s canonical ordering for
sets. This is followed by the monomials and coefficients, where the monomials encode the
exponents and the total degree in a single machine word. For example, for xy3z1, on a 64 bit
machine, we encode the four values (5, 1, 3, 1) using 16 bits each as the integer 5 · 248 + 232 +
3 · 216 + 1. Terms are sorted into graded lexicographical order by comparing the monomials
as unsigned integers. This gives a canonical representation for the polynomial. The current
implementation requires all coefficients to be integers.

Six advantages of the new representation are readily apparent.

1. POLY is much more compact, about 4× more compact on this example.

2. Monomial comparisons become machine word comparisons and monomial multiplica-
tion becomes machine word addition (provided there is no overflow), and monomial
division becomes subtraction with a bitwise test for failure. This dramatically speeds
up polynomial arithmetic.

3. Explicitly storing variables and sorting the terms lets us perform many common Maple
idioms without looking at all of the terms, e.g. degree(f) (total degree), indets(f)
(extract the set of variables), has(f, x), and type(f, polynom).

4. Other operations such as degree(f, x), diff(f, x), and coeff(f, x, i) (extract the co-
efficient of xi) access memory sequentially to make good use of cache. We can isolate
groups of exponents using masks. This eliminates branching and loops at the level of
the exponents.

17

5. For large polynomials, we avoid creating many small Maple objects (the PRODs) that
must be simplified by Maple’s internal simplifier and stored in Maple’s simpl table.
They fill the simpl table and slow down Maple’s garbage collector.

6. Polynomials will automatically display terms in descending order making it easier for
users to locate terms.

An obvious question is, what happens if the monomials cannot be stored in 64 bits? What
we decided to do for Maple 17 is use the sum-of-products data structure instead of allocating
more words for the monomials. That is, if all the monomials of a polynomials fit into one
64 bit word, Maple uses POLY, otherwise it uses the sum-of-products representation. Our
thinking is that the monomials of most polynomials that arise in practice will fit in 64 bits.
The following table shows, for n variables, how many bits b we have for each variable hence
the maximum degree in each variable that POLY allows.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
b 21 16 12 10 9 8 7 6 5 5 4 4 4 4 3 3 3 3 3 2

Because we support two representations, there are conversions to and from the POLY
and sum-of-products data structures. Also, for arithmetic between two polynomials in dif-
ferent variables, the monomials must first be repacked. All conversions and repackings are
automatic and invisible to the Maple user. To be precise, Maple 17 uses the POLY data
structure for a sum of terms if

(i) the coefficients are all integers

(ii) the variables are Maple names with regular evaluation rules, e.g. {x, y1, π} but not
infinity or undefined nor functions like sinx, f(1).

(iii) the number variables n < β/2 for β-bit machines,

(iv) the total degree d satisfies 1 < d < 2b where b = bβ/(n + 1)c for n > 1 and b = β − 2
for n = 1,

Otherwise the sum-of-products format is retained. Note, for polynomials with total de-
gree d = 1, we do not store them in as a POLY dag because Maple’s sum-of-products
representation is better in this case. For example f = 2x + 3y + 4z + 5 is represented as
SUM 9 x 2 y 3 z 4 1 5 . This is compact as monomials are not explicitly repre-

sented.
Another question is why we chose to store the total degree i + j + k of the monomial

xiyjzk as well as the individual degrees i, j, k. What is the advantage of using this graded
ordering instead of a pure lexicographical order? For it seems to cost us some bits. Consider

18

multiplying two polynomials a × b. If the total degree d = deg a + deg b does not overflow,
that is, d < 2b, then the entire product a× b can be computed without overflow and with no
overflow detection needed. This allows us to look at only the leading terms of polynomials
and predict overflow in O(1) time.

Consider dividing two polynomials a ÷ b. In the division algorithm, if one uses pure
lexicographical order, degrees in the remainder can increase and could cause overflow. For
example, consider the following division

x2y5 + y3 ÷ x2y + xy5

in lexicographical order with x > y. The quotient is y4 = x2y5 ÷ x2y and the remainder is
−xy9 + y3. Notice the degree of y has increased. If we had 3 bits per variable, the y9 would
overflow. We would need a bit per variable to detect this efficiently. In contrast, when a
graded ordering is used the total degree of the monomials in the division algorithm always
decreases. Therefore the degree in any individual variable cannot exceed the total degree.
In our example the leading term of the divisor would be xy5 and the division

x2y5 + y3 ÷ xy5 + x2y

would result in the quotient x and remainder −x3y + y3. Thus by using a graded ordering,
we don’t need extra bits to detect overflow.

5.2 Hashing of POLY

When implementing POLY in the Maple kernel, we took advantage of its unique represen-
tation to make hashing of large polynomials sub-linear time. The hash function first hashes
the degree, the variables, and the leading term of the polynomial. Then for a polynomial
having t terms and length 2t+ 2, we compute an odd stride

s = 2b 4

√
(2t+ 2)/256c+ 1

and hash every s word of the POLY dag, starting from the last, which is the trailing coef-
ficient. For polynomials with fewer than 127 terms, s = 1 and we hash every word of the
dag. For larger dags, the odd stride ensures that we alternate between hashing monomials
and coefficients.

The reasoning behind this is that Maple often creates temporary objects with unique
hashes, and we would like to reduce any linear time costs as much as possible. Any sequen-
tial overhead, particularly linear time overhead, reduces the potential for parallel speedup
according to Amdahl’s Law. In addition to hashing, computing the degree in x, testing for
sub-expressions, and extracting coefficients in x, all run in sub-linear time by exploiting the
degree field of the monomials to bound their search.

19

One thing that can not be done in sub-linear time is simplification. Maple must check
that the monomials in the POLY dag are valid and sorted, and if the polynomial hashes
to an existing value, Maple must compare the two objects in linear time. This however, is
significantly faster than the comparison for the sum-of-products dag.

5.3 Multiplication, division and factorization benchmarks

We present one benchmark to illustrate the gain made in Maple by the POLY data structure.
The timings in Table 1 below are in seconds. They were obtained on a Intel Core i7 920
computer, a quad core desktop computer running at 2.66 GHz. There are five multiplication
benchmarks and five factorization benchmarks. The first benchmark multiplies the polyno-
mials f1× (f1 +1) where f1 = (1+x+y+z)20 +1 then factors the product. This benchmark
is taken from Fateman in [3]. Benchmark 2 replaces f1 by f2 = 1 +x2 + y2 + z2 a polynomial
which is sparser than f1 to see if this makes any difference. Benchmarks f3 and f4 are just
larger polynomials. The polynomials f5 and g5 used in the last benchmark are sparse.

The timings for Maple 13 are using the sum-of-products data structure. The timings
for Maple 16 show the improvement obtained by our C library for large multiplications and
divisions where Maple converts from the sum-of-products to POLY, multiplies (divides) the
polynomials in the POLY representation using our (parallel) heap based algorithms in [9, 11],
then converts the result back to a sum-of-products. In Maple 17 where POLY is the default
data structure in the Maple kernel, there are no conversions and POLY is also used for small
polynomials. Note, the factorization code is the same in Maple 13, 16 and 17.

Maple Maple 16 Maple 17 Magma Singular Mathem
multiply 13 1 core 4 cores 1 core 4 cores 2.16-8 3.1.0 atica 7

p1 := f1(f1 + 1) 1.60 0.063 0.030 0.041 0.013 0.30 0.58 4.79
p2 := f2(f2 + 1) 1.55 0.054 0.028 0.042 0.017 0.30 0.57 5.06
p3 := f3(f3 + 1) 26.76 0.422 0.167 0.398 0.137 4.09 6.96 50.36
p4 := f4(f4 + 1) 95.97 2.14 0.643 1.770 0.416 13.25 30.64 273.01
p5 := f5g5 11.46 0.77 0.628 0.203 0.082 0.89 2.75 22.45

factor Hensel lifting is mostly polynomial multiplication!

p1 12341 terms 31.10 2.80 2.65 0.784 0.660 6.15 12.28 11.82
p2 12341 terms 296.32 2.86 2.74 1.18 1.06 6.81 23.67 64.31
p3 38711 terms 391.44 15.19 13.00 8.22 6.13 117.53 97.10 164.50
p4 135751 terms 2953.54 59.29 46.41 24.35 12.65 332.86 404.86 655.49
p5 417311 terms 1359.43 51.70 48.81 8.32 6.32 369.12 42.08 290.07

20

f1 = (1 + x + y + z)20 + 1 1771 terms
f2 = (1 + x2 + y2 + z2)20 + 1 1771 terms
f3 = (1 + x + y + z)30 + 1 5456 terms
f4 = (1 + x + y + z + t)20 + 1 10626 terms
f5 = (1 + u2 + v + w2 + x− y)10 + 1 3003 terms
g5 = (1 + u + v2 + w + x2 + y)10 + 1 3003 terms

Table 1: Timings (in seconds) for polynomial multiplications and factorizations.
Timings were obtained an Intel Core i7 920 quad-core desktop at 2.66GHz.

The timings show that Maple 13 is faster than Mathematica but considerably slower
than Singular and Magma. The improvement in Maple 16 shows that by improving the
performance of multiplication and division only, Maple moves from being the slowest system
at factorization to the fastest! But, if you look at the parallel timings closely, you will see that
the parallel speedup for the multiplication benchmarks is not 4 on this quad-core desktop.
For p4 it is 2.140/0.643 = 3.33×. And the parallel speedup of the factorization of p4 is poor.
This is because of the cost of converting from POLY to the sum-of-products representation.
In Maple 17 this conversion is eliminated the parallel speedup is 1.770/0.416 = 4.2×. And
the parallel speedup of the factorization of p4 is now 24.25/12.63 = 1.9× which we think
is a very good result. The best improvement in Maple 17 over Maple 16 is for the last
benchmark, the sparse benchmark.

5.4 Maple 18 Work

For Maple 17, the number of bits we allocated for the total degree is the same as the number
of bits for each variable’s degree. So for example, for n = 5 variables, we allocate b64/4c = 10
bits per variable and 10 bits for the total degree which leaves 4 bits unused. So the largest
degree is 1023. At that time we did not think it was worth the extra coding effort needed
to use those extra bits for total degree. The following table shows for n variables how many
bits are for each variable (row b) and how many extra bits are available for the total degree
(row x).

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
b 21 16 12 10 9 8 7 6 5 5 4 4 4 4 3 3 3 3 3 2
x 1 0 4 4 1 0 1 4 9 4 12 8 4 0 13 10 7 4 1 20

Notice that in the range of n = 8 to 14 variables, Maple could benefit significantly if we
used the extra bits for total degree. For Maple 18, released in 2014, we have recoded our
algorithms to make use of these extra bits for the total degree. As one example of a practical
problem where this increases substantially the range of problems that POLY can handle
consider again the problem of computing det(Vn) where Vn is the n×n Vandermonde matrix

21

(see Section 2.2). The determinant det(Vn) when expanded as a polynomial has degree n−1
in each variable and total degree n(n − 1)/2. Table 3 below shows that if we use the extra
bits for the total degree, the range for which det(Vn) can be represented with the POLY
data structure increases from n = 9 variables to n = 14 variables, a large increase. Column
deg shows the total degree n(n− 1)/2 of det(Vn). Shown also in the table is the time it took
Maple 16, 17 and Maple 18 to compute det(Vn). The reader can see that Maple 18 computes
det(Vn) for n = 11 and n = 12 quite quickly. Note, det(V13) has 13! terms. It is too big to
compute on our machine as it requires 13! × 2 × 8bytes = 99.6 × 109 bytes to store in the
POLY representation. The number of terms 13! also exceeds Maple’s maximum object size
of 231 terms because the header word uses 32 bits for the length (in words) or an object.

per variable total degree Timings for computing det(Vn)
n #bits maxdeg #bits maxdeg deg(det(Vn)) Maple 16 17 18
7 8 255 8 255 21 0.012s 0.005 0.004
8 7 127 8 255 28 0.093s 0.027 0.026
9 6 63 10 1023 36 1.35 s 0.218 0.150

10 5 31 14 16383 45 15.95s 25.44 1.57
11 5 31 9 511 55 – – 18.87
12 4 15 16 65535 66 236.4
13 4 15 12 4095 78 –
14 4 15 8 255 91
15 4 15 4 15 105
16 3 7 16 65535 120

Table 2: Real times in seconds to compute det(Vn) in Maple 16, 17 and 18.
Timings were obtained on a Intel Core i7 2600 running at 3.40 GHz.

6 Conclusion

Over the course of a large project like the development of Maple, thousands of design de-
cisions are made. Some decisions are borrowed from other systems, some are evolutionary,
some are revolutionary, and some have undesirable consequences.

The Maple sum-of-products data structure for mathematical expressions uses vectors.
Each object and sub-object in a Maple session is represented uniquely. These two design
decisions have clear efficiency advantages but also some disadvantages which Maple users
and Maple programmers have lived with for many years. This article has presented some of
the solutions that we and others have implemented to address these disadvantages.

Currently we are extending the POLY data structure so that it allows the coefficients to
be fractions and floating point numbers as well as integers and so that the variables may
also be functions like sinx, f(1), RootOf(z2 − 2, 1.4), etc. This will solve the problem with
using a DAG representation identified in Section 4.3.

22

References

[1] Bosma, W., Cannon, J., Playoust, C., 1997. The Magma Algebra Sys-
tem I: The User Language. J. Symb. Cmpt. 24(3-4), 235–265. See also
http://magma.maths.usyd.edu.au/magma

[2] Bruce W. Char, Keith O. Geddes, W. Morven Gentleman, Gaston H. Gonnet.
The design of maple: A compact, portable and powerful computer algebra system.
Proceedings of EUROCAL ’83, 101–115, Springer-Verlag, 1983. Accessible as Research
Report CS-83-06, https://cs.uwaterloo.ca/research/tr/1982/CS-82-40.pdf.

[3] Fateman, R., 2003. Comparing the speed of programs for sparse polynomial multiplica-
tion. ACM SIGSAM Bulletin 37 (1), pp. 4–15.

[4] Keith O. Geddes, Stephen R. Czapor, George Labahn. Algorithms for Computer Algebra,
Kluwer, 1992.

[5] Keith O. Geddes, Gaston H. Gonnet, Trevor J. Smedley. Heuristic Methods for Opera-
tions with Algebraic Numbers. Proc. of ISSAC ’88, ACM Press, 475–480, 1988.

[6] Gentleman, W.M., Johnson, S.C. Analysis of Algorithms, A Case Study: Determinants
of Matrices with Polynomial Entries. ACM Trans. on Math. Soft., 2(3), pp. 232–241,
1976.

[7] Greuel, G.-M., Pfister, G., Schönemann, H., 2005. Singular 3.0: A Computer Alge-
bra System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern. http://www.singular.uni-kl.de

[8] Donald E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical Algo-
rithms. Addison Wesley, 2nd edition, 1981.

[9] Michael Monagan and Roman Pearce. Parallel Sparse Polynomial Multiplication using
Heaps. Proceedings of ISSAC ’09, pp. 263–269, ACM Press, 2009.

[10] Michael Monagan and Roman Pearce. POLY: A new polynomial data structure for
Maple 17. Extended Abstract, Communications in Computer Algebra 46(4), 164−167,
2012.

[11] Roman Pearce and Michael Monagan. Parallel Sparse Polynomial Division using Heaps.
Proceedings of PASCO ’2010, ACM Press, pp. 105–111, 2010.

[12] Douglas R. Stinson. Cryptography: Theory and Practice Chapman & Hall, 3rd edition,
2006.

23

Appendix A

Maple, Mathematica, Magma and Singular code for creating the sum x + 2x2 + . . . + dxd,
the list [1, 2, . . . , d] and the set {1, 2, . . . , d} using loops. Note, Singular has no set data
structure.

Maple

S := 0:

d := 4000:

st := time():

for i from 1 to d do S := S+i*x^i od:

time()-st;

S := []:

d := 4000:

st := time():

for i to d do S := [op(S),i] od:

time()-st;

S := {}:

d := 4000;

st := time():

for i to d do S := S union {i} od:

time()-st;

Mathematica

f = 0;

d = 4000;

Timing[Do[{f = f+i*x^i}, {i,1,d}]]

S = {};

d = 4000;

Timing[Do[{S = Append[S,i]}, {i,1,d}]]

S = {};

d = 4000;

Timing[Do[{S = Union[S,{i}]}, {i,1,d}]]

Magma

24

Z := IntegerRing();

P<x> := PolynomialRing(Z);

f := 0;

d := 4000;

time for i in [1..d] do f := f+i*x^i; end for;

Z := IntegerRing();

d := 4000;

L := [];

time for i in [1..d] do L := Append(L,i); end for;

d := 4000;

S := {};

time for i in [1..d] do S := Include(S,i); end for;

Singular

ring R=0,(x),lp;

poly S;

int i,d,st;

S = 0;

d = 4000;

st = timer;

for (i=1; i <= d; i++) { S = S+i*x^i; }

timer-st;

list S;

int i,d,st;

S = list();

d = 4000;

st = timer;

for (i=1; i <= d; i++) { S = insert(S,i); }

timer-st;

Maple 18 Magma 2.19-6 Mathematica 9 Singular 3.1-4
d sum list set sum list set sum list set sum list set

4000 0.278 0.179 0.371 0.13 0.10 0.26 1.19 0.052 0.438 0.15 0.62 NA
8000 1.008 0.651 1.474 0.52 0.33 1.03 5.07 0.216 1.932 0.57 2.46 NA

16000 3.949 2.597 5.841 2.02 1.32 4.17 18.58 0.946 7.375 2.22 9.70 NA
Timings in CPU seconds on an Intel Core i7 920 at 2.67 GHz
showing that the time taken by all systems is quadratic in d.

25

