
ACM Communications in Computer Algebra, Vol 46, No. 4, Issue 182, December 2012 ISSAC Software

POLY : A new polynomial data structure for Maple 17 ∗

Michael Monagan and Roman Pearce
Department of Mathematics, Simon Fraser University

Burnaby B.C. V5A 1S6, Canada

Abstract

We demonstrate how a new data structure for sparse distributed polynomials in the Maple kernel
significantly accelerates a large subset of Maple library routines. The POLY data structure and its
associated kernel operations (degree, coeff, subs, has, diff, eval, ...) are programmed for high scalability,
allowing polynomials to have hundreds of millions of terms, and very low overhead, increasing parallel
speedup in existing routines and improving the performance of high level Maple library routines.

1 Introduction

The figure on the left below shows the default polynomial data structure in Maple 16 and all previous
versions. It is a “sum-of-products” where each term has a separate Maple object, a PROD, to represent
the monomial. To compute the degree, a coefficient in x, test for a subexpression, or do almost anything
else, the Maple kernel must descend through multiple levels of dags with recursive programs. This involves
extensive branching and random memory access, both of which are slow.

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

The old sum-of-products representation
has irregular Maple dags for each term.

Representations for the polynomial

9 xy3z − 4 y3z2 − 6 xy2z − 8 x3 − 5.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

The new packed distributed representation
uses bit fields and sorts terms by total degree.

The figure on the right shows our new data structure for sparse distributed polynomials. The first word
is a pointer to the variables which are sorted in Maple’s canonical ordering for sets. This is followed by
monomials and coefficients where the monomials encode the exponents together with the total degree in a
single machine word. E.g. for xy2z3 we store the values (6, 1, 2, 3) as 6 · 248 + 232 + 2 · 216 + 3 on a 64-bit
machine. The terms are sorted into graded lex order by comparing the monomials as unsigned integers.
This gives a canonical representation for the polynomial.

Three advantages of this representation are readily apparent. First, it is compact. Polynomials use
two words per term instead of 2n + 3 words, where n is the number of variables. For polynomials in 3
variables we save a factor of four. Second, by explicitly storing the variables and sorting the terms, we
can execute a large number of common Maple idioms in constant time, e.g. degree(f), indets(f) (extract
the set of variables in f), has(f, x), and type(f, polynom). Third, for large polynomials we avoid creating

∗This work was supported by Maplesoft and the MITACS NCE of Canada.

1



POLY : A new polynomial data structure for Maple 17 ISSAC Software

a lot of small Maple objects (the PRODs) each of which must be simplified by Maple’s internal simplifier
and then stored in Maple’s simpl table, an internal hash table of all Maple objects. They fill the simpl
table and slow down Maple’s garbage collector.

We are working to have the new data representation ready for Maple 17. Currently, a polynomial in n
variables with integer coefficients of total degree d with t terms in our new Maple is automatically stored
in the POLY dag representation on a 64 bit computer if (i) t > 1, (ii) d > 1, and (iii) d < 2b where
b = b64/(n + 1)c. Otherwise it is stored in the “sum-of-products” representation. All conversions between
representations are automatic and invisible to the Maple user.

2 Algorithms

The new representation has allowed us to write many high performance algorithms for the Maple kernel.
In the old data structure, most operations are O(nt), where n is the number of variables and t is the
number of terms. Maple must examine the entire “sum-of-products” structure because its contents are
unknown. In the new data structure, we can often avoid doing expensive operations on all of the terms.
We measured the speedup on a polynomial with one million terms in three variables, constructed as
f := expand(mul(randpoly(i, degree = 100, dense), i = [x, y, z])) : The cost for evaluation is added to the
other commands if you are using Maple interactively.

command description Maple 16 new dag speedup notes
f ; evaluation 0.162 s 0.000 s → O(n) evaluate the variables
coeff(f, x, 20) coefficient of x20 2.140 s 0.005 s 420x binary search for univariate f

coeffs(f, x) extract all coefficients in x 0.979 s 0.119 s 8x reorder exponents and radix sort
degree(f, x) degree in x 0.073 s 0.003 s 24x stop early using monomial degree
degree(f) total degree 0.175 s 0.000 s → O(1) first term in polynomial
diff(f, x) differentiate wrt x 0.956 s 0.031 s 30x terms remain sorted
eval(f, x = 6) compute f(6, y, z) 3.760 s 0.175 s 21x use Horner form (recursively)
expand(2xf) multiply by a term 1.190 s 0.066 s 18x terms remain sorted
has(f, x101) search for subexpression 0.040 s 0.002 s 20x O(n) for names, O(log t) for terms
indets(f) set of indeterminates 0.060 s 0.000 s → O(1) first word in dag
lcoeff(f, x) leading coefficient in x 0.058 s 0.005 s 11x stop early using monomial degree
subs(x = y, f) replace variable 1.160 s 0.076 s 15x combine exponents, sort, merge
taylor(f, x, 50) Taylor series to O(x50) 0.668 s 0.055 s 12x get coefficients in one pass
type(f, polynom) type check 0.029 s 0.000 s → O(n) type check the variables

To achieve these gains, we employ a bit-level programming style (9) to avoid branches and loops. For
example, to compute the degree of a monomial x3y5z7 in {x, z}, we would mask the exponents for x and
z and sum all of the fields using a parallel-prefix algorithm, which is O(log n). This is illustrated below,
for a 32-bit monomial.

monomial x3y5z7 00001111 00000011 00000101 00000111
mask for {x, z} 00000000 11111111 00000000 11111111

sum fields of 00000000 00000011 00000000 00000111

We chose a graded ordering as the default rather than pure lexicographical ordering for two reasons.
Firstly, the graded ordering is the more natural ordering for output and secondy, unlike lexicographical
order, in a graded ordering, the division algorithm cannot cause an overflow of the exponents from one
bit field to another. In the graded ordering, many of the above operations can still be done without need
to sort the result. For example, consider our polynomial f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5. If we
differentiate f with respect to x we obtain f ′ = 9y3z + 0− 6y2z− 24x2 + 0. Notice that the non-zero terms
in the derivative are sorted in the graded ordering.

2



Monagan and Pearce

3 Benchmarks

What impact on Maple’s performance does the new POLY dag have for high level computations? And
since the new POLY dag reduces the sequential overhead of computing with polynomials in Maple, how
does this improve parallel speedup? Do we see any parallel speedup for high level operations? We consider
two problems; computing determinants of matrices of polynomials and factoring polynomials.

3.1 A determinant benchmark.

Our first high level benchmark computes the determinant of the n × n symmetric Toeplitz matrix A for
6 ≤ n ≤ 11. This is a matrix in n variables x1, . . . , xn with xi appearing along the ith diagonal and ith

subdiagonal. We implemented the Bareiss algorithm (1) in Maple and Magma to compute det(A). At the
kth elimination step, ignoring pivoting, the Bareiss algorithm computes

Ai,j :=
Ak,kAi,j −Ai,kAk,j

Ak−1,k−1
for i = k + 1, . . . , n and j = k + 1, . . . , n

where the division is exact. At the end of the algorithm An,n = ±det(A). Thus the Bariess algorithm
does a sequence of O(n3) polynomial multiplications and divisions which grow in size, the largest of which
occurs at the last step when k = n− 1, i = n and j = n.

In Maple 16, large polynomial multiplications and divisions are done by our external library. This
includes our software for parallel polynomial multiplication and parallel polynomial division from (7; 8).
Polynomials are converted from the old sum-of-products representation into our new POLY dag, and back.
In our new Maple where the POLY dag is the default; the same library is used but there are now no
conversions.

In the table below column #det is the number of terms in the determinant, which has total degree n.
Column #num is the number of terms in An−1,n−1An,n − An,n−1An−1,n which has degree 2n − 2 and is
much larger than det(A). We used a quad core Intel Core i5 CPU @ 2.66 GHz running 64-bit Mac OS X.
Timings are real times in seconds, not cpu times. On 4 cores, we achieve a factor of 3 to 4 speedup over
Maple 16, which is huge. These gains are entirely from reducing the overhead of Maple data structures;
there is no change to the polynomial arithmetic over Maple 16. The reduction of overhead increases parallel
speedup to 2.59x, from 1.6x in Maple 16.

Maple 13 Maple 14 Maple 16 new POLY dag Magma 2.17
n #det #num 1 core 1 core 4 cores 1 core 4 cores 1 core 4 cores 1 core
6 120 575 0.015 0.010 0.010 0.008 0.009 0.002 0.002 0.000 s
7 427 3277 0.105 0.030 0.030 0.030 0.030 0.006 0.006 0.020 s
8 1628 21016 1.123 0.180 0.180 0.181 0.169 0.050 0.040 0.200 s
9 6090 128530 19.176 1.330 1.330 1.450 1.290 0.505 0.329 2.870 s
10 23797 813638 445.611 18.100 13.800 14.830 12.240 6.000 3.420 77.020 s
11 90296 5060172 − 217.020 145.800 151.200 94.340 88.430 34.140 2098.790 s

3.2 A factorization benchmark.

In our second benchmark we see a large gain in performance on polynomial factorization. To provide some
perspective, we include timings for Magma, Singular (4), Mathematica, and Trip (2), a computer algebra
system for celestial mechanics. We used an Intel Core i5 750 @ 2.66GHz and a Core i7 920 @ 2.66GHz
which had identical times in Maple 16. These are 64-bit quad core cpus.

All of the times in the table below are real times, not cpu times, in seconds. We report two times for
Trip. The (RS) time is for Trip’s optimized recursive sparse polynomial data structure POLYV. The (RD)
time is the optimized recursive dense data structure POLPV. Both use multiprecision rational coefficients
and Trip’s parallel routines (3). Both timings reported for Trip are for 4 cores.

3



POLY : A new polynomial data structure for Maple 17 ISSAC Software

Maple 13 Maple 16 new POLY dag Magma Singular Mathem Trip 1.2
1 core 4 cores 1 core 4 cores 2.16-8 3.1 atica 7.0 (RS) (RD)

multiply
p1 := f1(f1 + 1) 1.60 0.053 0.029 0.047 0.017 0.30 0.58 4.79 0.010 0.008
p2 := f2(f2 + 1) 1.55 0.054 0.028 0.047 0.016 0.30 0.57 5.06 0.018 0.016
p3 := f3(f3 + 1) 26.76 0.422 0.167 0.443 0.132 4.09 6.96 50.36 0.088 0.073
p4 := f4(f4 + 1) 95.97 1.810 0.632 1.870 0.506 13.25 30.64 273.01 0.433 0.336
divide
q1 := p1/f1 1.53 0.053 0.026 0.048 0.017 0.36 0.42 6.09 0.200 0.122
q2 := p2/f2 1.53 0.053 0.026 0.048 0.017 0.36 0.43 6.53 0.170 0.144
q3 := p3/f3 24.74 0.440 0.162 0.449 0.138 4.31 3.98 46.39 1.676 0.950
q4 := p4/f4 93.42 1.880 0.662 1.920 0.568 20.23 15.91 242.87 7.292 4.277
factor
p1 12341 terms 31.10 2.58 2.46 1.20 0.94 6.15 12.28 11.82
p2 12341 terms 296.32 2.86 2.74 1.36 1.09 6.81 23.67 64.31
p3 38711 terms 391.44 15.19 13.00 9.57 6.16 117.53 97.10 164.50
p4 135751 terms 2953.54 53.52 44.84 31.83 16.48 332.86 404.86 655.49

f1 = (1 + x + y + z)20 + 1
1771 terms

f2 = (1 + x2 + y2 + z2)20 + 1
1771 terms

f3 = (1 + x + y + z)30 + 1
5456 terms

f4 = (1 + x + y + z + t)20 + 1
10626 terms

The Maple timings are for executing the commands p1 := expand(f1*(f1+1)), divide(p1,f1,’q1’) and
factor(p1). The improvement from Maple 13 to Maple 16 is due to our improvements to polynomial
multiplication and division in (6; 7; 8) which we reported at ISSAC 2010 in (5). This is because most
of the time in multivariate factorization was spent in “Hensel lifting” which consists of many polynomial
multiplications and some exact divisions. However, there is little parallel speedup. We achieve significant
additional speedup (compare Maple 16 with the new POLY dag) with the POLY dag used by default.
Sequential speedup for factoring p1 is a factor of 2.58/1.20 = 2.15x and parallel speedup for factoring p4

improved from a factor of 53.52/44.48 = 1.19x in Maple 16 to 31.83/16.48 = 1.93x in our new Maple.

References
[1] E. Bariess. Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination. Mathematics

of computation 22 (102): 565−578, 1968.
[2] Gastineau, M., Laskar, J. Development of TRIP: Fast Sparse Multivariate Polynomial Multiplication

Using Burst Tries. Proceedings of ICCS 2006, Springer LNCS 3992, pp. 446–453, 2006.
[3] Gastineau, M. Parallel operations of sparse polynomials on multicores - I. Multiplication and Poisson

bracket. Proceedings of PASCO ’2010, ACM Press, pp. 44–52, 2010.
[4] Greuel, G.-M., Pfister, G., Schönemann, H., 2005. Singular 3.0: A Computer Algebra System for

Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern,
http://www.singular.uni-kl.de.

[5] M. Monagan, R. Pearce. Sparse Polynomial Multiplication and Division in Maple 14. Communications
in Computer Algebra, 44:4, 205–209, December 2010.

[6] Monagan, M., Pearce, R. Sparse Polynomial Division using Heaps. J. Symb. Cmpt. 46 (7) 807–822,
2011.

[7] Monagan, M., Pearce, R. Parallel Sparse Polynomial Multiplication Using Heaps. Proceedings of
ISSAC 2009, ACM Press, pp. 295–315, 2009.

[8] Monagan, M., Pearce, R. Parallel Sparse Polynomial Division Using Heaps. Proceedings of PASCO
2010, ACM Press, pp. 105–111, 2010.

[9] Warren, Henry S. Hacker’s Delight. Addison-Wesley, 2003.

4


