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Abstract. Hensel lifting is a key tool that is used to factor polynomials
and compute polynomial GCDs in Z[x], Z[x1, . . . , xn] and Fq[x1, . . . , xn].
There are two versions of Hensel lifting: Linear Hensel Lifting (LHL)
and Quadratic Hensel Lifting (QHL). For polynomials in Z[x], if classical
quadratic algorithms for × and ÷ are used, LHL and QHL both have
a quartic complexity. If asymptotically fast arithmetic is used, up to
logarithmic factors, LHL is cubic and QHL is quadratic.

In this work we present cubic algorithms for LHL for Z[x] and Zp[x, y].
We present details of C implementations of our cubic algorithms for Z[x]
and Zp[x, y]. We compare both with Magma implementations of QHL
using fast arithmetic. For both cases, we find that our our cubic LHL
outperforms Magma’s fast QHL for a very wide range of input sizes.
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1 Introduction

Hensel lifting is one of the main tools used to factor polynomials. It was first
used by Zassenhaus in [20] to factor polynomials in Z[x]. Musser in [12, 13]
and Wang and Rothschild in [15, 16] subsequently developed multivariate Hensel
lifting (MHL) to factor polynomials in Z[x1, . . . , xn]. In [8], Moses and Yun
applied MHL to compute the greatest common divisor of two polynomials in
Z[x1, . . . , xn]. They called their algorithm the EZ-GCD algorithm.

In [17] Wang improved his factorization algorithm for Z[x1, . . . , xn] and in
[18], he improved the EZ-GCD algorithm. Wang’s MHL codes are the default
algorithms used in Macsyma for factorization and for GCDs in Z[x1, . . . , xn].
Wang’s algorithms were implemented in Maple by Keith Geddes (see Ch. 6 of
[4]) and in Magma by Allan Steel [14].

For sparse multivariate polynomials, Wang’s MHL can be exponential in n
the number of variables. Random polynomial time algorithms for MHL for the
sparse case have been developed by Kaltofen [6] and by Monagan and Tuncer
[9]. The latter has been integrated into Maple for Maple version 2019.

In this paper we are interested in the complexity of Hensel lifting when used
for Hensel lifting in Z[x] and also in Zp[x, y] for prime p. Our work is motivated
by the parallel MHL algorithm of Monagan and Tuncer in [10] which reduces
Hensel lifting in Zp[x1, . . . , xn] to many bivariate Hensel lifts in Zp[x1, x2] which
are done in parallel. In this multivariate context, the degree of the polynomials
is usually under 1000 in practical applications.
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Let a ∈ Z[x]. For simplicity we consider the case of Hensel lifting two fac-
tors. The input to Hensel lifting is a, a lifting prime p and power m > 0, and
two polynomials f0 and g0 in Zp[x] satisfying (i) a − f0g0 ≡ 0 mod p and (ii)
gcd(f0, g0) = 1. The output is two polynomials f (m) and g(m) in Z[x] which
satisfy a − f (m)g(m) ≡ 0 mod pm, f (m) ≡ f0 mod p and g(m) ≡ g0 mod p. In
some applications we also require that f (m) and g(m) satisfy a − f (m)g(m) = 0
in Z[x]. An example is when computing g = gcd(a, b) where f = a/g.

Hensel’s Lemma says condition (ii) guarantees the existence of f (m) and g(m)

for all m > 1. The polynomials f (m) and g(m) are unique up to multiplication
by a scalar in Z. “Hensel Lifting” refers to algorithms which compute f (m) and
g(m) in a padic (base p) representation

f (k) =

k−1∑
i=0

fip
i and g(k) =

k−1∑
i=0

gip
k

where fi and gi are in Zp[x]. There are two versions of Hensel Lifting, linear
Hensel Lifting (LHL) and quadratic Hensel Lifting (QHL). In LHL, we recover
f (k+1) and g(k+1) from f (k) and g(k) for k = 0, 2, . . . ,m − 1. At step k, LHL
computes the error ek = a − f (k)g(k) then computes ck = (ek/pk) mod p then
solves the diophantine equation fkg0 + gkf0 = ck in Zp[x] for fk and gk with
deg fk < deg f0. For details and proofs we refer the reader to Ch. 6 of [4].

If we assume (i) p is of bounded size, (ii) classical quadratic O(k2) algorithms
are used for integer × and ÷ and (iii) classical quadratic O(d2) algorithms are
used for polynomial × and ÷, LHL is in O(m3d2). Miola and Yun [7] reduce
the complexity of LHL to O(m2d2) by avoiding recomputation of ek−1 at each
lifting step. We give details for this in Section 2.

QHL recovers f (2
k+1)) and g(2

k+1) from f (2
k) and g(2

k) for k = 0, 1, 2, . . . ,
dlog2me−1. For details of QHL see Chapter 15 of [3]. Assuming (i), (ii) and (iii)
above, the complexity of QHL is O(m2d2). If, however, we use fast polynomial
and integer arithmetic, QHL can be done in M(dm) where M(dm) is the cost
of multiplying integers of length O(md) words. This leads to an algorithm with
complexity ˜O(md). We cite also Bostan et. al. [2] whoe study the complexity of
QHL in Zp[x, y] for the multi-factor case.

In Appendix 1 we show that when fast arithmetic is used, QHL (Algorithm
15.10 in [3]) does the equivalent of 28 multiplications in Z[x] mod pm to compute
f (m) and g(m) from f0 and g0. This constant 28 means fast QHL will not beat
the quartic O(m2d2) LHL until fairly high precision. Our data in Section 6 shows
that Magma’s fast QHL beats our quartic LHL first at d = m = 200. For this
reason, both LHL and QHL are in used in practice.

In this paper we present cubic LHL algorithms for Z[x] and Zp[x, y]. For
Hensel lifting a = fg in Zp[x, y], if dx = deg(a, x) and dy = deg(a, y), our
algorithm does O(dxd

2
y + d2xdy) arithmetic operations in Zp (Theorem 1). For

Hensel lifting of a = fg in Z[x], if a has degree d and coefficients of size at most
10m, our algorithm has bit complexity O(md2 +m2d) (Theorem 2). Because the
complexities are cubic, our algorithms are not as fast asymptotically as QHL
when asymptotically fast arithmetic is used. But they are very practical. The
work they do is a little more than multiplying f × g using a modular method.

We have implemented our cubic algorithm in C for Zp[x, y] and for Z[x]. We
have also implemented QHL in Magma for both cases (see Appendix 1 and 2).
We used Magma because it is the only system with fast × and ÷ for both cases.
Our cubic algorithm beats Magma (Table 1) for all dx = dy ≤ 6, 000 and for
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all m = d ≤ 10, 000 (Table 2) which is as big as we could go in Magma before
Magma runs out of space on our 64 gigabyte machine.

Our paper is organized as follows. Section 2 gives details for Miola and Yun’s
version of linear Hensel lifting in Zp[x, y] and shows that it has a quartic com-
plexity. Section 3 develops a cubic LHL algorithm for Zp[x, y]. We start from
the quartic version of Bernardin [1]. We do this because our cubic algorithm is
much easier to see in this setting – this is how we found the cubic algorithm.
Section 4 develops a cubic LHL for Z[x]. Here we also give a treatment for the
non-monic case. In Section 5 we discuss our C implementation for our cubic algo-
rithm in Zp[x, y] and present benchmarks comparing the quartic algorithm, our
cubic algorithm, and a Magma implementation of QHL using fast arithmetic.
We also present an efficient Lagrange interpolation for Zp[x] using ± points. In
Section 6 we discuss an implementation in C for our cubic LHL in Z[x] and we
compare it with our C implementation of the quartic LHL of Miola and Yun [7],
and our Magma implementation of QHL using fast arithmetic. In Section 7 we
summarize our contribution and discuss two applications.

2 Quartic linear Hensel lifting in Zp[x, y]

We begin with a presentation of linear Hensel lifting (LHL) for Zp[x, y]. Let
a ∈ Zp[x, y] with dx = deg(a, x) > 1 and dy = deg(a, y) > 1. For simplicity we
assume a(x, y) is monic in x. The non-monic case is presented for Hensel lifting
in Z[x] in Section 3.

Suppose we are given the factorization a(x, α) = f0(x)g0(x) for some α ∈ Zp

such that gcd(f0, g0) = 1 in Zp[x]. Suppose we are looking for a factorization
a = fg with f0 = f(x, α) and g0 = g(x, α). Because gcd(f0, g0) = 1, Hensel’s
Lemma says, for k > 1, there exist k’th order approximations

f (k) =

k−1∑
i=0

fi(x)(y − α)i and g(k) =

k−1∑
i=0

gi(x)(y − α)i

with fi, gi ∈ Zp[x] such that a − f (k)g(k) ≡ 0 mod (y − α)k. Given f (k) and
g(k), to compute fk and gk, LHL computes the error ek = a − f (k)g(k) then
ck = ek/(y−α)k mod (y−α) then solves the polynomial diophantine equation
fkg0 + gkf0 = ck with deg fk < deg f0. Following Miola and Yun [7] we use

ek
(y − α)k

=
a− f (k)g(k)

(y − α)k

=
a− (f (k−1) + fk−1(y − α)k)(g(k−1) + gk−1(y − α)k−1)

(y − α)k

=

ek−1
(y − α)k−1

− fk−1g(k−1) − gk−1f (k−1) − fk−1gk−1(y − α)k−1

y − α

to avoid recomputing ek−1. We present the algorithm as Algorithm 1 below. In
Algorithm 1, the value of error after Step 5 is ek/(y − α)k and the order terms
on the right count arithmetic operations in Zp.

The most expensive step in Algorithm 1 is the computation of the error in
Step 10. The worst case occurs when both factors f and g have degree dy/2
in y and degree dx/2 in x. The multiplications fkg and gkf cost O(dx(kdx))
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Algorithm 1 Quartic Bivariate Hensel Lifting for Zp[x, y]: Monic Case.

Input: prime p, α ∈ Zp, a ∈ Zp[x, y] and f0, g0 ∈ Zp[x] satisfying
(i) a, f0, g0 are monic in x, (ii) a(y = α) = f0g0 and (iii) gcd(f0, g0) = 1.

Output: f, g ∈ Zp[x, y] such that a = fg or FAIL.

1: dx ← deg(a, x); dy ← deg(a, y); f ← f0; g ← g0.
2: error ← a− f0 g0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(d2x + dxdy)
3: Solve sg0 + tf0 = 1 using the extended Euclidean algorithm. . . . . . . . . . . . . . . O(d2x)
4: for k = 1, 2, 3, . . . while deg(f, y) + deg(g, y) < dy do
5: error ← error/(y − α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(dxdy)
6: ck ← error(y = α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(dxdy)
7: if ck 6= 0 then
8: // Solve fkg0 + gkf0 = ck in Zp[x] for fk, gk ∈ Zp[x] with deg fk < deg f0
9: fk ← (sck) rem f0; gk ← (ck − fkg0) quo f0. . . . . . . . . . . . . . . . . . . . . . . .O(d2x)

10: error ← error − fkg − gkf − fkgk(y − α)k . . . . . . . . . . . . . . . . . . . . . . . .O(kd2x)
11: f ← f + fk(y − α)k; g ← g + gk(y − α)k. . . . . . . . . . . . . . . . . . . . . . . . . .O(kdx)
12: end if
13: end for
14: if error = 0 then return f, g else return FAIL end if

and the multiplication fkgk(y − α)k costs O(d2x + kdx). In total Step 10 does∑dy/2
k=1 O(kd2x) = O(d2yd

2
x) arithmetic operations in Zp in the worst case. Note,

to establish that the lifted factors f and g satisfy a = fg Hensel lifting must
multiply f by g, which, in the classical quadratic model, is also O(d2xd

2
y).

3 Cubic Hensel Lifting in Zp[x, y]

To obtain an algorithm with cubic complexity we first reorganize the order in
which we compute the products figj in Zp[x] in Algorithm 1. Figure 1 shows at
which iteration k Algorithm 1 computes figj and Algorithm 2 computes figj .

f0g0

f1g0

f2g0

f3g0

f0g1

f1g1

f2g1

f3g1

f0g2

f1g2

f2g2

f3g2

f0g3

f1g3

f2g3

f3g3

f0g4

f1g4

f2g4

f3g4

f0g0

f1g0

f2g0

f3g0

f0g1

f1g1

f2g1

f3g1

f0g2

f1g2

f2g2

f3g2

f0g3

f1g3

f2g3

f3g3

f0g4

f1g4

f2g4

f3g4

Iteration k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Fig. 1. shows at which iteration k Algorithm 1 (left) and Algorithm 2 (right) multiplies
fi × gj for an example where deg(f, y) = 3 and deg(g, y) = 4. Gray squares figj are
not explicitly multiplied.
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The key is that in order to compute fk and gk at step k, we only need ck,

the coefficient of a− f (k)g(k) in (y−α)k. Let a =
∑deg(a,y)

k=0 ak(x)(y−α)k be the
Taylor representation of a(x, y). One way to compute ak efficiently is to use the
formula ak = a(k)(α)/k! where a(k) = ∂ka(x, y)/∂yk. Alternatively, in Algorithm
2, we use polynomial long division by (y − α) to obtain the ak.

At Step 6 let df = deg(f (k), y) and dg = deg(g(k), y). We have df < k and
dg < k and

ck = coeff
(
a− f (k)g(k), (y − α)k

)
= ak −

min(k,df)∑
i=max(0,k−dg)

figk−i.

Now let n = deg(a, y). When the iteration terminates at k = n we need to
know if the error a− f (n)g(n) = 0. Let ek = coeff(a− f (n)g(n), (y − α)k). Then
a − f (n)g(n) = 0 ⇐⇒ ek = 0 for 0 ≤ k ≤ n. We have the following relationship
between the ck which we compute and ek:

ek = ak −
k∑

i=0

figk−i = ck − (f0gk + g0fk).

Thus it appears that we should compute ck − (f0gk + g0fk) and test if it is zero.
But, after computing ck we solve fkg0 + gkf0 = ck for fk and gk so we already
know that these ek are zero. So the two multiplications f0gk and g0fk, shown in
gray in Figure 1, may be omitted. This leads to Algorithm 2 for LHL.

Algorithm 2 Cubic Hensel Lifting for Zp[x, y]: Monic Case.

Input: prime p, α ∈ Zp, a ∈ Zp[x, y] and f0, g0 ∈ Zp[x] satisfying
(i) a, f0, g0 are monic in x, (ii) a(y = α) = f0g0 and (iii) gcd(f0, g0) = 1.

Output: f, g ∈ Zp[x, y] such that a = fg or FAIL ⇒ no such f, g exist.

1: dx ← deg(a, x); dy ← deg(a, y); df ← 0; dg ← 0.
2: Solve sg0 + tf0 = 1 using the extended Euclidean algorithm. . . . . . . . . . . . . . . O(d2x)
3: a← a quo y − α // Note (ii) implies a− f0g0 rem y − α = 0.
4: for k = 1 to dy do
5: ak ← a rem (y − α); a← a quo (y − α). . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(dxdy)

6: ck ← ak −
∑min(k−1,df)

i=max(1,k−dg) figk−i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(kd2x)
7: if df + dg = dy and ck 6= 0 then
8: return FAIL // ek 6= 0 so the error is not zero
9: end if

10: // Solve fkg0 + gkf0 = ck in Zp[x] for fk, gk ∈ Zp[x] with deg fk < deg f0
11: fk ← (sck) rem f0; gk ← (ck − fkg0) quo f0. . . . . . . . . . . . . . . . . . . . . . . . . . .O(d2x)
12: if fk 6= 0 then df ← k; end if
13: if gk 6= 0 then dg ← k; end if
14: end for
15: f ←

∑df
i=0 fi(y − α)i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(dfd2x) ⊂ O(dyd

2
x)

16: g ←
∑dg

i=0 gi(y − α)i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(dgd2x) ⊂ O(dyd
2
x)

17: return f, g.

Although not explicit, Algorithm 2 works in two phases. In the first phase,
while df+dg < deg(a, y), it is computing the coefficients fk and gk. In the second
phase, after dg+dg = deg(a, y), it is checking that the coefficients ek of the error



6 Monagan

are 0 for k ≥ max(df, dg). Referring to Figure 1, in the first phase Algorithm
2 computes c1 = a1 then c2 = a2 − f1g1 then c3 = a3 − (f1g2 + f2g1) then
c4 = a3− (f3g1 +f2g2 +f1g3). Now f and g are determined. In the second phase
Algorithm 2 computes c5 = a5−(f3g2 +f2g3 +f1g4) then c6 = a6−(f3g3 +f2g4)
then finally c7 = a7 − f3g4.

Observe that in total, Steps 5, 15 and 16 of Algorithm 2 cost O(dxd
2
y) arith-

metic operations in Zp and Step 11 costs O(d2xdy). The most expensive part of
Algorithm 2 is the sum

∆(x) =

min(k−1,df)∑
i=max(1,k−dg)

figk−i

in Step 6. The worst case occurs when deg(f, y) = deg(g, y) = dy/2, which
maximizes the cost of computing the product fg, so that the cost of the poly-

nomial multiplications for computing ∆(x) is
∑dy/2

k=1 (k− 1)O(d2x) = O(d2yd
2
x). So

Algorithm 2 is quartic.
In [1], Bernardin sped up the computation of∆(x) by computing the products

figk−i in parallel. Bernardin also tried using fast multiplication for each figk−i
– he used Karatsuba. Instead, we obtain a natural cubic algorithm by using
classical evaluation and interpolation with a memory as follows.

To interpolate ck(x), since deg(ck, x) < deg(a, x) (this follows from a, f0, g0
being monic in x) dx evaluation points are sufficient. We replace Step 6 with

6 if k > 1 then
6a: fk−1,j ← fk−1(x = j) for 0 ≤ j ≤ dx − 1.

gk−1,j ← gk−1(x = j) for 0 ≤ j ≤ dx − 1.

6b: ∆j ←
∑min(k−1,df)

i=max(1,k−dg) fi,j × gk−i,j for 0 ≤ j ≤ dx − 1.

6c: Interpolate ∆(x) from points (j,∆j) : 0 ≤ j ≤ dx − 1.
6d: ck ← ak −∆(x).
else ck ← ak.

We must remember the previous evaluations of f1, f2, . . . , fk−2 and g1, g2, . . . , gk−2
for re-use in Step 6b. The space needed for this is O(dxdy) elements of Zp which
is of the same order as a dense input a(x, y). Using Horner evaluation in Zp[x]
Step 6a is O(d2x) multiplications and additions in Zp. Step 6b is O(kdx) multi-
plications and additions. For Step 6c we may use either Newton interpolation
or Lagrange interpolation both of which are O(d2x) arithmetic operations in Zp.
The subtraction in Step 6d is in Zp[x] so it costs O(dx). Summing for k = 1 to
dy we have Steps 6a, 6b, 6c and 6d cost O(d2xdy), O(dxd

2
y), O(d2xdy) and O(dxdy)

respectively. Thus we have the following result.

Theorem 1. Algorithm 2 does O(dxd
2
y + d2xdy) arithmetic operations in Zp.

Remark 1. If p ≥ dx does not hold one may use a small field extension; pick the
smallest j such that q = pj ≥ dx so that the field Fq with q elements has enough
elements for evaluation and interpolation.

4 Cubic Hensel Lifting in Z[x]

Let a =
∑d

i=0 aix
i be a polynomial in Z[x] with degree d > 1. Let p > 2 be a

prime that does not divide lc(a) = ad the leading coefficient of a. The choice of
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p for Hensel lifting depends on the application. For the GCD problem, where we
want to compute gcd(a, b) for a, b ∈ Z[x], one would choose a word size prime
e.g. 63 bits on a 64 bit computer.

Suppose we are given f0, g0 ∈ Zp[x] that satisfy (i) a− f0g0 ≡ 0 mod p and
(ii) gcd(f0, g0) = 1 and we are trying to find factors f, g ∈ Z[x] such that a = fg
and f mod p = f0 and g mod p = g0, if they exist.

Let f (k) = f0 + f1p + · · · + fk−1p
k−1 and g(k) = g0 + g1p + · · · + gk−1p

k−1

be k′th order approximations of f and g, i.e., fi, gi ∈ Zp[x] and a− f (k)g(k) ≡ 0
mod pk. To obtain k + 1st order approximations we may compute the error
ek = a− f (k)g(k), then compute ck = (ek/p

k) mod p then solve the polynomial
diophantine equation fkg0+gkf0 = ck for fk, gk ∈ Zp[x] with deg(fk) < deg(f0).
For details see Chapter 6 of [4].

If we need to lift m steps to f (m) and g(m), assuming classical quadratic mul-
tiplication in Z and Zp[x], this leads to an algorithm with complexity O(m3d2).
To obtain an O(m2d2) algorithm, Miola and Yun [7] reuse ek−1 in the compu-
tation of ek to avoid recomputation. For k > 1 they use

ek
pk

=
a− f (k)g(k)

pk
=
ek−1/p

k−1 − fk−1g(k−1) + gk−1f
(k−1) − fkgkp(k−1)

p
.

Observe that we do not need the terms fk−1(g2p
2 + . . . ) nor gk−1(f2p

2 + . . . )
nor fkpkp

k−1 for k > 2 to determine ck. To obtain a cubic algorithm, for k > 1
we will use

ek
pk

=
ek−1/p

k−1 − fk−1g0 − gk−1f0
p

−
k−1∑
i=1

figk−i

so that e2
p2 = e1/p−f1g0−g1f0

p − f1g1 and e3
p3 = e2/p

2−f2g0−g2f0
p − f1g2 − f2g1.

The algorithm is presented as Algorithm 3. As in the Zp[x, y] case, the sum

∆ =
∑k−1

i=1 figk−i is the computational bottleneck and, after f and g have been
determined, we must continue to complete the multiplication of fg to show that
a − fg = 0. In Algorithm 3 we have done this in a separate while loop. We
also need a bound B on the height of the factors f and g of a. For this one may
use the Mignotte bound – see [3]. Unlike the Zp[x, y] case, because of carries, we
must explicitly multiply fk−1g0 and gk−1f0.

We also include a treatment of the non-monic case in Algorithm 3. We assume
the input polynomial a(x) is primitive, i.e., content(a) = gcd(a0, a1, . . . , ad) = 1.
Let γ = lc(a) = ad be the leading coefficient of a(x). Following [4] we use the
“replace leading coefficient trick” where we attach γ to f0 and g0. This means
that if α = lc(f) and β = lc(g) so that γ = αβ, the algorithm computes f (nf) =
βf and g(ng) = αg for some nf and ng and stops when γa− f (nf)g(ng) = 0.

In Algorithm 3 the mods operation means use the symmetric remainder,
and not the normal remainder. This is necessary to recover negative coefficients
in f and g. It is also why the prime p cannot be 2. Given c ∈ Z, for p > 2,
the symmetric remainder satisfies c = pq + r for a quotient q and remainder
−p−1

2 ≤ r ≤
p−1
2 . In the algorithm, where we apply it to polynomials in Z[x] we

mean apply it to each coefficient. For example, for a = 9x2 + 40x+ 11 and p = 7
we have mods(a, p) = 2x2 − 2x− 3.

The bottleneck of Algorithm 3 is the computation of ∆ in Steps 14 and 20.
Here fi and gj are in Zp[x] with deg f0 + deg g0 = d and deg fk + deg gk < d
for k > 0. Using classical multiplication this costs O(kd2). The total work is∑m

k=1O(kd2) = O(m2d2).
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Algorithm 3 Cubic Linear Hensel Lifting for Z[x]: General Case.

Input: prime p > 2, a ∈ Z[x] with d = deg a > 1 and f0, g0 ∈ Zp[x] satisfying
(i) content(a) = 1, (ii) γ mod p 6= 0, (iii) a− f0g0 ≡ 0 mod p and (iv) gcd(f0, g0) = 1.
Also a lifting bound B > max(||f ||, ||g||). Let γ be the leading coefficient of a and let
m = dlogp(2γB)e. m is the maximum number of lifting steps needed to recover both
factors.

Output: f, g ∈ Z[x] such that a = fg or FAIL ⇒ no such f, g exist.

1: γ ← lc(a); a← γa; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(m2d)
2: f0 ←mods(γ lc(f0)−1f0, p); Replace lc(f0) with γ so that f0 = γxdf + . . .
3: g0 ←mods(γ lc(g0)−1g0, p); Replace lc(g0) with γ so that g0 = γxdg + . . .
4: Solve sg0 + tf0 = 1 using the extended Euclidean algorithm . . . . . . . . . . . . . . .O(d2)
5: T ← f0g0; e← (a− T )/p; . . . . . . . . . . . . . . . . . . . . . . . . . . O(d2 +m2 +md) +O(md).
6: Initialize k ← 1; nf ← 0; ng ← 0;
7: while pk < 2Bγ and e 6= 0 do
8: ck ← e mod p; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(md)
9: // Solve fkg0 + gkf0 = ck in Zp[x] for fk, gk ∈ Zp[x] with deg fk < deg f0

10: fk ← (sck) rem f0; gk ← (ck − fkg0) quo f0; . . . . . . . . . . . . . . . . . . . . . . . . . .O(d2)
11: if fk 6= 0 then nf ← k; fk = mods(fk, p); end if
12: if gk 6= 0 then ng ← k; gk = mods(gk, p); end if
13: C ← f0gk + g0fk; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(d2 +md)
14: ∆←

∑k
i=1 figk+1−i; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(kd2)

15: e← (e− C)/p−∆; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(md)
16: k ← k + 1;
17: end while
18: while k < nf + ng do
19: if e mod p 6= 0 then return FAIL; end if
20: ∆←

∑nf
i=k+1−ng figk+1−i; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(kd2)

21: e← e/p−∆; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(md)
22: k ← k + 1;
23: end while
24: if e 6= 0 then return FAIL; end if
25: f ←

∑nf
i=0 fip

i; f ← f/content(f); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(m2d)
26: g ←

∑ng
i=0 gip

i; g ← g/content(g); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(m2d)
27: return f , g

Let a =
∑d

i=0 aix
i with ai ∈ Z. Let ||a|| denote the height of a, that is, ||a|| =

maxd
i=0 |ai|. Since the coefficients of fi and gi are in the range [−p−1

2 ,+p−1
2 ],

we have ||∆|| < k d
2 (p

2 )2 ≤ mdp2

8 . We propose to compute ∆ modulo primes

q1, q2, . . . and use Chinese remaindering. If q is the smallest prime dlogq
mdp2

4 e
primes are sufficient. If p < 264 and md < 260, which will be the case in prac-
tice, then three 63 bit primes are sufficient. For each prime we use the same
evaluation/interpolation strategy that we used to make Algorithm 2 have cubic
complexity. So at step k we compute ∆ modulo qi in O(kd) arithmetic operations
modulo qi.

Note that the products f0gk and g0fk in Step 13 are of the form (γxdf +
∆f0)gk and (γxdg + ∆g0)fk where the coefficients of ∆f0, fk, ∆g0 and gk are
mod p. Since γ may be the largest coefficient of a then logp(γ) ∈ O(m) so these
two products cost O(md + d2). Summing

∑m
k=1 this is O(m2 + md2). Thus we

have established the following result.
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Theorem 2. If deg a = d and p is of bounded size and the primes used for the
Chinese remaindering are at least q then we can compute f = f (m) and g = g(m)

in O(m2d logq(md) +md2). Moreover, if q2 > md, which will always be the case
in practice if we use primes of 50 bits or more, then we can compute f and g in
O(m2d+md2).

5 Implementation and Benchmarks for Zp[x, y]

Table 1 shows timings for Hensel lifting in Zp[x, y] for three algorithms for p =
231− 1. The timings were obtained using a sever with 64 gigabytes of RAM and
two Intel Xeon E5 2680 processors running at 2.2GHz base and 3.0GHz turbo.

In Table 1, d is the degree of both factors in both variables, i.e., dx=dy=d. The

factors f and g have the form xd +
∑d−1

i=0

∑3
j=1 cijy

eijxi where the coefficients
cij are chosen at random from [0, p) and the exponents eij are chosen at random
from [0, d]. We then input α = 3, a = f × g, f0 = f(x, 3) and g0 = g(x, 3) to
Hensel lifting.

The second column labelled “Linear Lift” is for the quartic O(d2xd
2
y) algo-

rithm. The third column labelled “New1” is for our new cubic O(d2xdy + dxd
2
y)

algorithm where we used Horner evaluation and Newton interpolation to com-
pute the sum in Step 6. The fourth column labelled “New2” is also for our new
cubic algorithm but we have made several optimizations discussed later in this
section. The fifth column labelled Magma is for a Magma implementation of
QHL in Fp[x, y]. The Magma code used is given in Appendix 2. Magma uses fast
multiplication in Fp[x, y] and fast division in Fp[x, y] mod (y − α)k.

Linear Lift New O(d3) Linear Lift Fast Quadratic
d O(d4) New1 New2 in Magma (#steps)

10 0.14ms(.04) 0.22ms(0.14) 0.17ms(0.07) 10.9ms (4)
15 0.35ms(.19) 0.57ms(0.37) 0.34ms(0.11) 35.7ms (4)
20 0.75ms(.46) 1.23ms(0.85) 0.63ms(0.25) 48.9ms (5)
40 6.58ms(5.09) 8.57ms(5.49) 3.22ms(0.98) 244ms (6)
60 26.7ms(22.2) 27.7ms(22.2) 8.70ms(2.56) 464ms (6)

100 166ms(148) 126ms(103) 34.2ms(10.2) 1.59s (7)
200 2.15s(2.03) 992ms(834) 230ms(65ms) 8.73s (8)
400 29.5s(28.5) 7.91s(6.71) 1.63s(0.49) 45.7s (9)
800 425s(418) 63.4s(53.8) 13.9s(3.87) 273.8s (1.13gb) (10)

1000 1017s(1003) 125s(109) 26.7s(7.41) 391.7s (1.48gb) (10)
1500 5135.4s 382.6s 87.2s (0.39gb) 1195.8s (4.17gb) (11)
2000 NA 1000s 207s (0.69gb) 1808.5s (5.81gb) (11)
3000 NA 3348s 709s (1.55gb) 6230.7s (17.1gb) (12)
4000 NA NA 1704s (4.35gb) 9255.7s (22.8gb) (12)
6000 NA NA 5438s (6.20gb) 36500.s (68.2gb) (13)
8000 NA NA 13035s (11.0gb) NA

Table 1. Hensel lifting timings for Zp[x, y] with p = 231 − 1. NA = Not attempted.

As the reader can see our cubic algorithm (column New1) does not beat the
quartic algorithm until d > 60. At degree d = 1000 the New1 beats the quartic
algorithm by a factor of 1017/125=8.1. In comparison with QHL, New1 beats
Magma’s QHL by a factor of 1.59/0.126 = 12.6 at d = 100 and 391.7/125 = 3.1
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at d = 1000. This is a good result but we had hoped that we would beat the
O(d4) method earlier. Shown in Table 1 in () in columns New1 and New2 is
the time spent evaluating fk and gk and interpolating ck. For example, for d =
100 we spent 103/126=82% doing this. In what follows we will reduce this to
obtain the timings in column New2. Here at d = 100 we spent 10.2/34.2=30% in
evaluation and interpolation. New2 beats the classical method at d = 15 which is
an excellent result. New2 beats Magma by a factor of 1.59/0.034=47 at d = 100
and a factor of 391.7/26.7=14.7 at d = 1000. At d = 6000, which is as far as we
could go with Magma because of the space it is using, Magma’s fast method has
still not caught our cubic method. Thus New2 is the fastest method for d ≥ 15.

5.1 Optimizations for Zp[x, y]

It is well known that hardware integer division instructions are much slower than
hardware integer multiplication instructions. In [11] Granlund and Montgomery
show how to speedup division by using two multiplications and several additions,
shifts and bitwise logical operations to divide by p. For the New1 timings in Table
1 we are using Möller and Granlund’s improved algorithm from [5]. We find that
the time to multiply f × g in Zp[x] for p = 262 − 57 and deg f = deg g = 10000
on an Intel Core i7 2600 was 2.46s using the hardware division, and 0.407s using
Möller and Granlund for a speedup of a factor of 6. For convolutions of the form∑n

i=0 aibi and
∑n

i=0 aibn−i in Zp we obtain a further significant speedup of a
factor of 3.5 by using a double precision accumulator to reduce the number of
divisions to one. To illustrate, the C code below does this for a 31 bit prime
using a 64 bit accumulator.

# define I64 long long int

int dotproductp ( int *A, int *B, int n, int p ) {

// compute ( A[0] B[0] + A[1] B[1] + ... + A[n-1] B[n-1] ) mod p

// assumes 1 < p < 2^31 and 0 <= A[i], B[i] < p

int i; I64 m,z;

m = p; m = m << 32; // m = 2^32 p

z = m;

for( i=0; i<n; i++ ) {

z -= (I64) A[i] * B[i];

z += (z >> 63) & m; // if( z<0 ) z += m;

}

z = (-z) % p;

if( z<0 ) z += p;

return z;

}

For a 63 bit prime we have implemented this in assembler using the 64 bit
by 64 bit multiply and 128 bit addition. The time for the above polynomial
multiplication was reduced to 0.115s, for a speedup of another factor of 3.5.

The timings in column New2 in Table 1 are for a reorganization of the evalu-
ation and interpolation algorithm so that we can use the accumulator option. We
also 0,±1,±2, . . . ,±d

2 for the evaluation points which allows us to speed up eval-
uation and interpolation by a further factor of 2. Because the prime p = 231 − 1
used is smaller than the biggest possible, we can unroll the loop yielding a further
improvement. The total improvement is a factor of 103/10.2=10 for d = 100.
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Let c(x) be the polynomial we wish to interpolate and let d = deg(c(x)). In
what follows we assume d is even; if not, we add 1 to d and use an additional
evaluation point.

It is easy to evaluate a polynomial c(x) in Zp[x] twice as fast using ± points.

Let c(x) =
∑d

i=0 cix
i. Write c(x) = a(x2) +xb(x2) where a(x) =

∑d/2
i=0 c2ix

i and

b(x) =
∑d/2−1

i=0 c2i+1x
i. If we have already evaluated c(α) = a(α2) + α b(α2) we

can compute c(−α) = a(α2) − α b(α2) using one more subtraction. To also use
the accumulator trick we compute a(α2) via the dot product [a0, a2, a4, . . . , ad] ·
[1, α2, . . . , αd] and b(α2) via the dot product [a1, a3, . . . , ad−1] · [1, α2, . . . , αd−2].
For α = i, the arrays [1, i2, i4, . . . , id] for i = 1, 2, . . . , d/2 are computed before
the main Hensel loop so they can be reused.

Let c(x) =
∑d

i=0 cix
i and assume we have computed c(0) and c(±i) for

1 ≤ i ≤ d/2. We will use Lagrange interpolation to interpolate c(x). Let

L(x) =

d/2∏
i=−d/2

(x− i) and Li(x) =
L(x)

(x− i)
for − d

2
≤ i ≤ d

2
.

The polynomials Li(x) are the Lagrange basis polynomials so we may write

c(x) =
∑d/2

i=−d/2 αiLi(x) for some unique αi. To determine the Lagrange coeffi-

cients αi, since Lj(i) = 0 for j 6= i we have αi = c(i)/Li(i). Furtherore, since
Li(i) = (d − i)!i!(−1)(d−i) we can compute αi with 2 multiplications assuming
we have already computed the inverses of i! for 1 ≤ i ≤ d.

Let Li(x) =
∑d

j=0 Lijx
j and Li = [Li0 Li1 Li2 . . . Lid]. In matrix vector form

we can compute the coefficients ci of c(x) using


c0
c1
c2
...
cd

 =

 | | | | |

L0 L1 L−1 . . . Ld/2 L−d/2
| | | | |




α0

α1

α−1
...

αd/2

α−d/2


First note that Li(0) = 0 for all i 6= 0 so c0 = α0L00. Because d is even we

have L−i(x) = Li(−x) so we only need compute Li(x) for 0 ≤ i ≤ d/2. For even
i we can compute ci using (d

2 + 1)d
2 multiplications as follows.

c2
c4
c6
...
cd

 =


L02 L12 L22 . . . L d

2 2

L04 L14 L24 . . . L d
2 4

L06 L16 L26 . . . L d
2 6

. . . . . . . . . . . . . . .
L0 d

2
L1 d

2
L2 d

2
. . . L d

2
d
2




α1 + α2

α3 + α4

α5 + α6

...
α d

2−1
+ α d

2


Similarly for odd i we can compute ci using

c1
c3
c5
...

cd−1

 =


L01 L11 L21 . . . L d

2 1

L03 L13 L23 . . . L d
2 3

L05 L15 L25 . . . L d
2 5

. . . . . . . . . . . . . . .
L0 d

2−1
L1 d

2−1
L2 d

2−1
. . . L d

2
d
2−1




α1 − α2

α3 − α4

α5 − α6

...
α d

2−1
− α d

2


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Thus we can determine c1, c2, . . . , cd using d(d
2 + 1) multiplications. Crucially,

if we do all these multiplications as dot products of vectors, we can use our
accumulator optimization if the matrices are constructed in row major order.

We compute Li(x) for 0 ≤ i ≤ d/2 by first computing L(x) then dividing
L(x) by x − i using polynomial division. The two matrices formed from Li(x)
for 0 ≤ i ≤ d/2 and the inverses of the factorials are computed once before the
main Hensel lifting loop and reused in the loop.

6 Implementation and Benchmarks for Z[x]

Our implementation of Algorithm 3 assumes the lifting prime p < 263. To com-
pute ∆ in Steps 14 and 20 we use three 63 bit primes q1, q2, q3. For evaluation
of fk and gk and interpolation of ∆ mod qi, since we may choose q1, q2, q3 we
choose them of the form qi = 230si + 1 so that we can use an FFT for evaluation
and interpolation since this is faster.

In Algorithm 3, since e is initialized to include the input polynomial a, all
computations involving e in Steps 5, 8, 13, 14, 15, 19, 20, and 21, will involve
large integers. If we use a package like GMP, this would complicate memory man-
agement and cause a slowdown. In Algorithm 4 we have reorganized Algorithm
3 for the monic case to eliminate all multi-precision arithmetic with e. First we
compute an explicit padic representation of a =

∑
i=0 ai(x)pk (see Steps 3 and

4) and include the coefficient ak in e when needed to determine ck in Step 8.
We seek to bound ||e||, the height of e at Step 9 and 20. The heights ||C|| and

||∆|| are maximized when deg(f, x)=deg(g, x)=d
2 . We have ||C|| < 2d

2 (p
2 )2 = 2dp2

4

and ||∆|| < k d
2 (p

2 )2 ≤ mdp2

8 where m is the maximum number of lifting steps.
Since in Step 16, we divide e − C by p before subtracting ∆, after Step 16 the
height of e will be a little larger than ||∆||, and certainly no larger than twice
mdp2

8 . If p < 263 then three 63 bit primes q1, q2, q3 will be sufficient in most cases
to recover the coefficients of e using Chinese remaindering at Step 9 and 20. Our
idea is to do all computations involving C, ∆ and e with values. If we use an
FFT we need n values where n = 2k and n ≥ d.

Let ωj have order n mod qj . We need the values fi(ω
r
j ), gi(ω

r
j ) and ai(ω

r
j )

for 0≤i≤k, 0≤r< n, and 1≤j≤3. Using these values we can compute values of
C(ωr

j ) in Step 13, ∆(ωr
j ) in Step 14 and 20, and e(ωr

j ) in Steps 15 and 21. Using
the values e(ωr

j ) we interpolate e(x) mod qi then use Chinese remaindering to
recover the integer coefficients of e for Steps 9 and 20. The most expensive of
these is computing ∆(ωr

j ) in Step 15 which costs
∑m

k=1 kn ∈ O(m2n) = O(m2d).
Thus the modifications do not change the asymptotic complexity.

We mention a space optimization. At the k’th step, after computing fk(x)
and gk(x), it would be natural to store the values of fk(ωm

j ) and gk(ωm
j ) in

six two-dimensional arrays F1, F2, F3 and G1, G2, G3. But, to compute values of
∆(ωr

j ) we need to compute
∑k

i=1 fi(ω
r
j )gk+1−i(ω

r
j ) for 0≤r<n and 1≤j≤3. To

do this in a cache friendly manner, after computing fk(ωr
j ) and gk(ωr

j ), we store
them transposed. For example, after step k the r’th row of Fj is

f0(ωr
j ) f1(ωr

j ) . . . fk(ωr
j ) 0 0 0 . . . 0

The total storage for the six arrays is 6n(m + 1) words of memory. It is more
than six times the size of a dense input polynomial a(x) so it limits the size of
the problems we can solve. If ||f || ||g|| ≤ B, which is usually the case, then more
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Algorithm 4 Cubic Linear Hensel Lifting for Z[x]: Monic Case.

Input: prime p > 2, a ∈ Z[x] with d = deg a > 1 and f0, g0 ∈ Zp[x] satisfying
(i) a, f0, g0 are monic in x, (ii) a− f0g0 ≡ 0 mod p and (iii) gcd(f0, g0) = 1.
Also a lifting bound B > max(||f ||, ||g||, ||a||).

Output: f, g ∈ Z[x] such that a = fg or FAIL ⇒ no such f, g exist.

1: f0 ←mods(f0, p); g0 ←mods(g0, p);
2: Solve sg0 + tf0 = 1 using the extended Euclidean algorithm . . . . . . . . . . . . . . .O(d2)
3: a0 ←mods(a, p); a← (a− a0)/p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(md)
4: e← (a0 − f0g0)/p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(d2)
5: k ← 1; nf ← 0; ng ← 0.
6: while pk < 2B do
7: ak ←mods(a, p); a← (a− ak)/p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(md).
8: e← e+ ak
9: ck ← e mod p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(d)

10: // Solve fkg0 + gkf0 = ck in Zp[x] for fk, gk ∈ Zp[x] with deg fk < deg f0
11: fk ← (sck) rem f0; gk ← (ck − fkg0) quo f0 . . . . . . . . . . . . . . . . . . . . . . . . . . .O(d2)
12: if fk 6= 0 then nf ← k; fk = mods(fk, p) end if
13: if gk 6= 0 then ng ← k; gk = mods(gk, p) end if
14: C ← f0gk + g0fk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(d2)
15: ∆←

∑k
i=1 figk+1−i; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(kd2)

16: e← (e− C)/p−∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(kd)
17: k ← k + 1.
18: end while
19: while k < nf + ng do
20: if e mod p 6= 0 then output FAIL; end if
21: ∆←

∑nf
i=k+1−ng figk+1−i; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(kd2)

22: e← e/p−∆; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(kd)
23: end while
24: if e 6= 0 then output FAIL end if
25: f ←

∑nf
i=0 fip

i; g ←
∑ng

i=0 gip
i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(m2d)

26: output f, g.

than half of the entries in these matrices will be zero. But we don’t know which
of f or g has the larger coefficients, so we don’t know how big the rows of Fj

and Gj should be in advance. To save half the space we create one array of size
n× (m+ 1) and, for each j, store the values of f and g together as follows

f0(ωr
j ) f1(ωr

j ) . . . fk(ωr
j ) 0 0 . . . 0 0 gk(ωr

j ) . . . g1(ωr
j ) g0(ωr

j )

If the length of the coefficients of f and g would collide, we simply make a copy
of the array Fj and set Gj to point to the copy, and continue lifting.

6.1 Benchmarks for Z[x]

Table 2 presents timings for Hensel lifting in Z[x] using p = 250 − 27. The
polynomials f and g have degree d with coefficients chosen uniformly at random
from (−pm, pm) and set a = fg. In Table 2, the timings in column C quartic are
for our C implementation of LHL using an O(m2d2) algorithm for computing ∆.
The time spent computing ∆ is shown in parentheses. The timings in column
Maple is for a Maple implementation of LHL. Maple beats our C code at d =
m = 800 because it is using a fast multiplication for multiplication in Zp[x].
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Old LHL Fast QHL Cubic LHL
d / m C quartic(∆) Maple(error) Magma C cubic(∆)

25 / 25 .0012(.0005) 0.016(0.004) 0.015 0.0025(.0005)
50 / 50 .0101(.0072) 0.134(0.043) 0.062 0.0106(.0028)

100 / 100 0.124(0.108) 1.157(0.607) 0.294 0.051(0.015)
200 / 200 1.774(1.685) 6.745(4.656) 1.683 0.263(0.080)
300 / 300 8.598(8.342) 22.03(16.84) 7.53 0.850(0.400)
400 / 400 26.66(26.13) 53.16(42.67) 10.70 1.500(0.650)
600 / 600 138.2(136.1) 143.7(123.3) 50.44 6.310(3.900)
800 / 800 429.4(424.7) 370.2(320.6) 65.98(0.31gb) 10.93(6.350)

1000/ 1000 1052.(1042.) 674.5(582.4) 74.92(0.37gb) 17.16(9.070)(0.10gb)
2000/ 2000 NA 5875.(5256.) 425.1(1.35gb) 119.2(69.46)(0.40gb)
4000/ 4000 NA NA 2345.(5.28gb) 880.6(531.3)(1.61gb)
8000/ 8000 NA NA 12287.2(21.01gb) 6748.(4170.)(6.42gb)

10000/10000 NA NA 46646.8(47.30gb) 18315.(13333.)(16.1gb)
12000/12000 NA NA NA 27775.(19195.)(19.3gb)

10 / 100000 1988.(1997.) NA 233.8 1244.8(1238.8)
100 / 10000 1218.(1216.) NA 234.7 105.1(101.1)
1000 / 1000 1052.(1042.) NA 74.9 17.17(9.68)
10000 / 100 1091.(1004.) NA 106.9 57.00(3.48)
100000 / 10 1972.(858.8) NA 155.7 777.3(1.46)

Table 2. Timings in CPU seconds for Hensel lifting in Z[x] using p = 250 − 27. LHL
= linear Hensel lifting, QHL = quadratic Hensel lifting, NA = Not Attempted.

The timings in column Magma are for our Magma implementation of QHL

in Appendix 1. The multiplication in Z[x] and division in ZM [x] where M = p2
k

are both done using fast arithmetic. The Magma timings in the last 5 rows verify
this. The timings in column C cubic are for our C implementation of our new
O(d2m+m2d) algorithm. The time spent computing ∆ (up to m = d = 800) is
shown in parentheses. Shown in parentheses for m = d ≥ 1000 (and for Magma)
is the total space used in gigabytes.

The data in Table 2 shows Magma’s fast QHL lift beats the O(d2m2) LHL
algorithm at m = d = 200. Our first result is that our O(d2m + m2d) LHL
algorithm beats the O(d2m2) algorithm just over m = d = 50. Our second result
is that our cubic LHL beats Magma’s fast QHL for all values d = m in Table 2. It
also uses about one third of the space of Magma. This is a very good result. The
only cases where it loses to Magma are d = 10,m = 105 and d = 105,m = 10.

7 Conclusion

In this paper we have introduced a cubic algorithm for linear Hensel lifting
(LHL). We have shown that our C implementation beats a Magma implementa-
tion of fast quadratic Hensel lifting (QHL) in Zp[x, y] and Z[x] for a wide range
of input sizes. Thus we believe our cubic algorithm stands a chance of becoming
the algorithm of choice in practice.

In [10] Monagan and Tuncer reduce multivariate Hensel lifting to many bi-
variate Hensel lifts in Zp[x, y]. In that context, our cubic algorithm beats the
quartic LHL early enough to be useful. In Table 1, for d = 100, we obtain a
speedup of a factor of 166/34.2=4.8.

In [7] Miolo and Yun used Hensel lifting to compute g = gcd(a, b) in Z[x] and
they compared it with the modular GCD algorithm (see Algorithm 6.38 of [3]).
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The quartic LHL algorithm that Miola and Yun developed is not competitive
with the modular GCD algorithm which has a cubic complexity of O(md2+m2d).
Because of this disadvantage, in 1989, the author replaced Maple’s GCD code for
Z[x], which was using Miola and Yun’s LHL with the modular GCD algorithm.
Magma also uses the modular GCD algorithm for gcd computation in Z[x]. Our
new cubic LHL means the modular GCD algorithm no longer has this asymptotic
advantage over LHL. Indeed Hensel lifting has an advantage: if one input, a say,
is much smaller than b (the degree is smaller or the size of the coefficients is
smaller), Hensel lifting can be applied to the smaller polynomial a whereas the
modular GCD algorithm must always compute with both a and b.

In the paper we only considered the two factor case. We are currently working
with G. Paluck to develop cubic LHL for a ∈ Zp[x] for more than two factors.
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Appendix 1: Magma code for QHL in Z[x].

Reference: Algorithm 15.10 “Hensel step” from [3]. We have modified it to stop
when the error is 0 and to lift the solutions to the diophantine equation to half
the precision. Magma is using fast multiplication for multiplications in Z[x], fast
division for the two divisions QuotRem(...) in Zm[x] and fast division for the
integer divisions by m in reduce(...).

Z := IntegerRing();

Zx<x> := PolynomialRing(Z);

height := function(f)

m := 0;

for c in Coefficients(f) do m := Max(Abs(c),m); end for;

return m;

end function;

FactorBound := function(f)

h := height(f);

d := Degree(f);

return 2^(d-1)*h*Ceiling(Sqrt(d));

end function;

getpoly := function(d,m,p)

n := p^m;

C := [ Random(-n,n) : i in [0..d-1] ];

g := Zx!C;

return x^d+g;

end function;

DivideModm := function(f,g,m)

Zm := ResidueClassRing(m);

Zmx<x> := PolynomialRing(Zm);

F := Zmx!f;

G := Zmx!g;

Q,R := Quotrem(F,G); // divide in Zm[x]

q := Zx!Q;

r := Zx!R;

return q,r;

end function;

reduce := function( f, m )

return Zx![ c mod m : c in Coefficients(f) ];

end function;

mods := function(a,p,p2)

if a ge p2 then return a-p; else return a; end if;

end function;

mapmods := function(f,p,p2)

return Zx![ mods(c,p,p2) : c in Coefficients(f) ];

end function;

HenselLift := function( f, g0, h0, p )

Fp := GaloisField(p);
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Fpy<y> := PolynomialRing(Fp);

g0 := mapmods(g0,p,p/2); g := g0;

h0 := mapmods(h0,p,p/2); h := h0;

G0,S0,T0 := XGCD( Fpy!g0, Fpy!h0 );

s := Zx!S0; t := Zx!T0;

B := FactorBound(f); // height bound on factors of f

m := p;

e := f-g*h;

while m lt 2*B do

m := m^2; m2 := (m-1)/2;

e := reduce(e,m);

q,r := DivideModm(s*e,h,m);

u := t*e+q*g; u := reduce(u,m);

g := g + u; g := mapmods( g, m, m2 );

h := h + r; h := mapmods( h, m, m2 );

e := f-g*h;

if e eq 0 then break; end if;

if m gt 2*B then break; end if;

// Lift diophantine equation solutions s and t

b := s*g + t*h - 1; b := reduce(b,m);

c,d := DivideModm(s*b,h,m);

u := t*b+c*g; u := reduce(u,m);

s := s - d;

t := t - u;

end while;

return e, g, h ;

end function;

d := 400; m := 400; p := 2^31-1;

g := getpoly(d,m,p);

h := getpoly(d,m,p);

f := g*h;

g0 := reduce(g,p);

h0 := reduce(h,p);

printf "Start Hensel lift: d=%m m=%m p=%m\n", d,m,p;

time e, G, H := HenselLift(f,g0,h0,p);

e; G-g; H-h; // should all be 0

The reader can see that the algorithm does 4 multiplications at precision 2k

(mod m = p2
k

), namely, s*e, t*e, q*g and f*g and one division of se ÷ h in
Zm[x]. Fast division (see Algorithm 9.5 of [3]) reduces division to 5 multiplica-
tions of precision 2k, three to compute the inverse, one to obtain the quotient
and one more for the remainder. Thus 9 multiplications at precision 2k.

The algorithm also must lift the solutions to the diophantine equation to
precision 2(k−1). The reader can see that there are 5 multiplications s*g, t*h,
s*b, t*b and c*g and one division sb ÷ h which is equivalent to another 10
multiplications at precision 2k−1.
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Adding up the work to lift the factors from mod p1 to mod p2
k

we have
9
∑k

i=1 2i = 18 × 2k − 18 plus 10
∑k−1

i=1 2i = 10 × 2k − 20 for a total of 28
multiplications at precision 2k.

Appendix 2: Magma code for QHL in Zp[x, y].

dx := 80;

dy := 80;

p := 2^31-1;

alpha := 3;

n := 1;

Fp := GaloisField(p);

Zpy<y> := PolynomialRing(Fp);

Zpxy<x> := PolynomialRing(Zpy);

getexpons := function(dy,n)

L := [];

while #L lt n do

e := Random(dy+1);

if not( e in L ) then L := Append(L,e); end if;

end while;

return L;

end function;

getcoeff := function(dy,p)

E := getexpons(dy,3); // E has 3 distinct integers

C := 0;

for e in E do C := C + Random(p)*y^e; end for;

return C;

end function;

getpoly := function(dx,dy,p)

C := [ getcoeff(dy,p) : i in [0..dx-1] ];

f := Zpxy!C;

return x^dx+f;

end function;

G := getpoly(dx,dy,p);

H := getpoly(dx,dy,p);

time f := G*H;

reduce := function( f, m )

return Zpxy![ c mod m : c in Coefficients(f) ];

end function;

g0 := reduce(G,y-alpha); G0 := Zpy!g0;

h0 := reduce(H,y-alpha); H0 := Zpy!h0;

gcd,S0,T0 := XGCD( G0, H0 );

convertytox := function( f )

g := Zpxy!Coefficients(f);

return g;

end function;
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DivideModm := function(f,g,m)

I := ideal<Zpy|m>;

Q := quo<Zpy|I>;

Rx := PolynomialRing(Q);

F := Rx!f;

G := Rx!g;

Q,R := Quotrem(F,G);

q := Zpxy!Q;

r := Zpxy!R;

return q,r ;

end function;

time for i := 1 to n do

s := convertytox(S0);

t := convertytox(T0);

g := g0;

h := h0;

m := Zpy!(y-alpha);

e := f-g*h;

k := 1;

while Degree(m) le 2*dy do

//print "Step", k, "Degree", Degree(m);

m := m^2;

e := reduce(e,m);

q,r := DivideModm(s*e,h,m);

u := t*e+q*g; u := reduce(u,m);

g := g + u;

h := h + r;

e := f-g*h;

if e eq 0 then break; end if;

// Lift diophantine equation solutions

b := s*g + t*h - 1; b := reduce(b,m);

c,d := DivideModm(s*b,h,m);

u := t*b+c*g; u := reduce(u,m);

s := s - d;

t := t - u;

k := k+1;

end while;

end for;

e; G-g; H-h; // should be 0


