
Implementing the tangent Graeffe
root finding method∗†

JORIS VAN DER HOEVENabc, MICHAEL MONAGANad

a. Department of Mathematics
Simon Fraser University
8888 University Drive

Burnaby, British Columbia
V5A 1S6, Canada

b. CNRS, École polytechnique, Institut Polytechnique de Paris
Laboratoire d'informatique de l'École polytechnique (LIX, UMR 7161)

1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
c. Email: vdhoeven@lix.polytechnique.fr

d. Email: mmonagan@cecm.sfu.ca

May 9, 2020

The tangent Graeffe method has been developed for the efficient computation of single
roots of polynomials over finite fields with multiplicative groups of smooth order. It
is a key ingredient of sparse interpolation using geometric progressions, in the case
when blackbox evaluations are comparatively cheap. In this paper, we improve the
complexity of the method by a constant factor and we report on a new implementation
of the method and a first parallel implemenation.

1. INTRODUCTION
Consider a polynomial function f : 𝕂n →𝕂 over a field 𝕂 given through a black box
capable of evaluating f at points in 𝕂n. The problem of sparse interpolation is to recover
the representation of f ∈𝕂[x1, . . . ,xn] in its usual form, as a linear combination

f = �
1⩽i⩽t

ci𝒙𝒆i (1)

of monomials 𝒙𝒆i=x1
e1,1 ⋅ ⋅ ⋅ xn

e1,n. One popular approach to sparse interpolation is to eval-
uate f at points in a geometric progression. This approach goes back to work of Prony
in the eighteen's century [29] and became well known after Ben-Or and Tiwari's seminal
paper [2]. It has widely been used in computer algebra, both in theory [6, 19, 21, 22, 23,
24, 28] and in practice [8, 9, 15, 16, 18, 20]; see [30] for a nice survey.

More precisely, if a bound T for the number of terms t is known, then we first evaluate
f at 2T−1 pairwise distinct points 𝜶0,𝜶1,...,𝜶2T−2, where 𝜶=(𝛼1,...,𝛼n)∈𝕂n and 𝜶k≔(𝛼1k,...,
𝛼n

k) for all k∈ℕ. The generating function of the evaluations at 𝜶k satisfies the identity

�
k∈ℕ

f (𝜶k)zk= �
1⩽i⩽t

�
k∈ℕ

ci𝜶𝒆ik zk= �
1⩽i⩽t

ci
1−𝜶𝒆i z =

N(z)
Λ(z) ,
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where Λ=(1− 𝜶𝒆1 z) ⋅ ⋅ ⋅ (1− 𝜶𝒆t z) and N ∈𝕂[z] is of degree <t. The rational function
N/Λ can be recovered from f (𝜶0), f (𝜶1), . . . , f (𝜶2T−2) using fast Padé approximation [5,
27]. For well chosen points 𝜶, it is often possible to recover the exponents 𝒆i from the
values 𝜶𝒆i∈𝕂. If the exponents 𝒆i are known, then the coefficients ci can also be recovered
using a transposed version of fast multipoint interpolation [4, 6]. This leaves us with the
question how to compute the roots 𝜶−𝒆i of Λ in an efficient way.

For practical applications in computer algebra, we usually have 𝕂=ℚ, in which case
it is most efficient to use a multi-modular strategy. This means that we rather work with
coefficients in a finite field 𝕂=𝔽p, where p is a prime number that we are free to choose.
It is well known that polynomial arithmetic over 𝔽p can be implemented most efficiently
using FFTs when the order p −1 of the multiplicative group is smooth. In practice, this
prompts us to choose p of the form s 2l + 1 for some small s and such that p fits into
a machine word.

The traditional way to compute roots of polynomials over finite fields is using Cantor
and Zassenhaus' method [7]. In [12, 13], alternative algorithms were proposed for our
case of interest when p−1 is smooth. The fastest algorithm was based on the tangent Gra-
effe transform and it gains a factor log t with respect to Cantor–Zassenhaus' method. The
aim of the present paper is to report on a parallel implementation of this new algorithm
and on a few improvements that allow for a further constant speed-up.

In section 2, we start by recalling generalities about the Graeffe transform and the
heuristic root finding method based on the tangent Graeffe transform from [12]. In sec-
tion 3, we present the main new theoretical improvements, which all rely on optimizations
in the FFT-model for fast polynomial arithmetic. Our contributions are threefold:

• In the FFT-model, one backward transform out of four can be saved for Graeffe
transforms of order two (see section 3.2).

• When composing a large number of Graeffe transforms of order two, FFT caching
can be used to gain another factor of 3/2 (see section 3.3).

• All optimizations still apply in the TFT model, which can save a factor between
one and two, depending on the number of roots (see section 3.5).

We also indicate how to generalize our methods to Graeffe transforms of general orders
in section 3.4.

Section 4 is devoted to our new implementation. We first implemented a sequential
version of the tangent Graeffe method in C, with the optimizations from sections 3.2
and 3.3. We also started experimenting with a parallel implementation in Cilk C. Our
sequential implementation confirms the major performance improvement with respect
to Cantor–Zassenhaus' algorithm. We also observed the gain of a new factor of two when
using the new optimizations. So far, we have achieved a parallel speed-up by a factor
of 4.6 on an 8-core machine. Our implementation is freely available at:

http://www.cecm.sfu.ca/CAG/code/TangentGraeffe

2. ROOT FINDING USING THE TANGENT GRAEFFE TRANSFORM

2.1. Graeffe transforms
The traditional Graeffe transform of a monic polynomial P∈𝕂[z] of degree d is the unique
monic polynomial G(P)∈𝕂[z] of degree d such that

G(P)(z2)=P(z)P(−z). (2)
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If P splits over 𝕂 into linear factors P=(z−𝛽1) ⋅ ⋅ ⋅ (z−𝛽d), then one has

G(P)=(z−𝛽1
2) ⋅ ⋅ ⋅ (z−𝛽d

2).

More generally, given r⩾2, we define the Graeffe transform of order r to be the unique
monic polynomial Gr(P)∈𝕂[z] of degree d such that

Gr(P)(z)=(−1)rdResu(P(u),ur −z)
If P=(z−𝛽1) ⋅ ⋅ ⋅ (z−𝛽d), then

Gr(P)=(z−𝛽1
r) ⋅ ⋅ ⋅ (z−𝛽d

r).

If 𝜔 is a primitive r-th root of unity in 𝕂, then we also have

Gr(P)(zr)=P(z)P(𝜔z) ⋅ ⋅ ⋅P(𝜔r−1z). (3)

If r, s⩾2, then we finally have
Grs=Gr∘Gs=Gs∘Gr. (4)

2.2. Root finding using tangent Graeffe transforms
Let 𝜖 be a formal indeterminate with 𝜖2=0. Elements in 𝕂[𝜖]/(𝜖2) are called tangent
numbers. They are of the form a+ b𝜖 with a,b∈𝕂 and basic arithmetic operations go as
follows:

(a+b𝜖)±(c+d𝜖) = (a± c)+(b±d)𝜖
(a+b𝜖)(c+d𝜖) = a c+(ad+bc)𝜖

Now let P∈𝕂[z] be a monic polynomial of degree d that splits over 𝕂:

P=(z−𝛼1) ⋅ ⋅ ⋅ (z−𝛼d),

where 𝛼1, . . . , 𝛼d∈𝕂 are pairwise distinct. Then the tangent deformation P̃(z)≔P(z+𝜀)
satisfies

P̃=P+P′ 𝜖=(z− (𝛼1−𝜖)) ⋅ ⋅ ⋅ (z− (𝛼d −𝜖)).
The definitions from the previous subsection readily extend to coefficients in𝕂[𝜖] instead
of 𝕂. Given r⩾2, we call Gr(P̃) the tangent Graeffe transform of P of order r. We have

Gr(P̃)=(z− (𝛼1−𝜖)r) ⋅ ⋅ ⋅ (z− (𝛼d −𝜖)r),
where

(𝛼k −𝜖)r=𝛼k
r − r𝛼k

r−1𝜖, k=1, . . . ,d.

Now assume that we have an efficient way to determine the roots 𝛼1r, . . . , 𝛼d
r of Gr(P). For

some polynomial T∈𝕂[z], we may decompose

Gr(P̃)=Gr(P)+T𝜖
For any root 𝛼k

r of Gr(P), we then have

Gr(P̃)(𝛼k
r − r𝛼k

r−1𝜖) = Gr(P)(𝛼k
r)+(T(𝛼k

r)−Gr(P)′(𝛼k
r) r𝛼k

r−1)𝜖
= (T(𝛼k

r)−Gr(P)′(𝛼k
r) r𝛼k

r−1)𝜖
= 0.

Whenever 𝛼k
r happens to be a single root of Gr(P), it follows that

r𝛼k
r−1= T(𝛼k

r)
Gr(P)′(𝛼k

r).
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If 𝛼k
r≠0, this finally allows us to recover 𝛼k as

𝛼k= r 𝛼k
r

r𝛼k
r−1 .

2.3. Heuristic root finding over smooth finite fields
Assume now that𝕂=𝔽p is a finite field, where p is a prime number of the form p=𝜎2m+1
for some small 𝜎. Assume also that 𝜔∈𝔽p be a primitive element of order p −1 for the
multiplicative group of 𝔽p.

Let P=(z−𝛼1) ⋅⋅⋅ (z−𝛼d)∈𝔽p[z] be as in the previous subsection. The tangent Graeffe
method can be used to efficiently compute those 𝛼k of P for which 𝛼k

r is a single root of
Gr(P). In order to guarantee that there are a sufficient number of such roots, we first
replace P(z) by P(z+𝜏) for a random shift 𝜏∈𝔽p, and use the following heuristic:

H. For any subset {𝛼1, . . .,𝛼d}⊆𝔽p of cardinality d and any r⩽(p−1)/(4d), there exist
at least p/2 elements 𝜏∈𝔽p such that {(𝛼1−𝜏)r, . . ., (𝛼d−𝜏)r} contains at least 2d/3
elements.

For a random shift 𝜏∈𝔽p and any r⩽(p−1)/(4d), the assumption ensures with proba-
bility at least 1/2 that Gr(P(z+𝜏)) has at least d/3 single roots.

Now take r to be the largest power of two such that r⩽(p−1)/(4d) and let s=(p−1)/r.
By construction, note that s=O(d). The roots 𝛼1r, . . . , 𝛼d

r of Gr(P) are all s-th roots of unity
in the set {1, 𝜔r, . . . , 𝜔(s−1)r}. We may thus determine them by evaluating Gr(P) at 𝜔i

for i=0, . . . , s − 1. Since s=O(d), this can be done efficiently using a discrete Fourier
transform. Combined with the tangent Graeffe method from the previous subsection,
this leads to the following probabilistic algorithm for root finding:

Algorithm 1
Input: P∈𝔽p[z] of degree d and only order one factors, p=𝜎 2m+1

Output: the set {𝛼1, . . . , 𝛼d} of roots of P

1. If d=0 then return ∅

2. Let 𝜏∈𝔽p be a random shift
Let r=2N∈2ℕ be largest such that r⩽(p−1)/(4d) and let s≔(p−1)/r

3. Compute P∗≔P(z+𝜏)∈𝔽p[z]

4. Compute P̃(z)≔P∗(z+𝜖)=P∗(z)+P∗(z)′𝜖∈(𝔽p[𝜖]/(𝜖2))[z]

5. For i=1, . . . ,N, set P̃≔G2(P̃)∈(𝔽p[𝜖]/(𝜖2))[z]

6. Let 𝜔∈𝔽p
∗ be of order p−1

Write P̃=A+B𝜖 and compute A(𝜔ir), A′(𝜔ir), and B(𝜔ir) for i=0, . . . , s−1

7. If P(𝜏)=0, then set S≔{𝜏}, else set S≔∅

8. For any 𝛽∈{1,𝜔r, . . . ,𝜔(s−1)r} with A(𝛽)=0 and A′(𝛽)≠0,
let S≔S∪{r𝛽A′(𝛽)/B(𝛽)+𝜏}

9. Compute Q≔∏𝛼∈S (z−𝛼)

10. Recursively determine the set of roots S′ of P/Q

11. Return S∪S′

4 IMPLEMENTING THE TANGENT GRAEFFE ROOT FINDING METHOD



Remark 1. To compute G2(P̃) = G2(A + B 𝜖) we may use G2(P̃(z2)) = A(z) A(−z) +
(A(z)B(−z)+B(z)A(−z))𝜖, which requires three polynomial multiplications in 𝔽p[z] of
degree d. In total, step 5 therefore performs O(N)=O(log (p/s)) such multiplications.
We discuss how to perform step 5 efficiently in the FFT model in section 3.

Remark 2. For practical implementations, one may vary the threshold r⩽(p − 1)/(4d)
for r and the resulting threshold s⩾4d for s. For larger values of s, the computations of
the DFTs in step 6 get more expensive, but the proportion of single roots goes up, so more
roots are determined at each iteration. From an asymptotic complexity perspective, it
would be best to take s≍ d log p� . In practice, we actually preferred to take the lower
threshold s⩾2d, because the constant factor of our implementation of step 6 (based on
Bluestein's algorithm [3]) is significant with respect to our highly optimized implemen-
tation of the tangent Graeffe method. A second reason we prefer s of size O(d) instead
of O(d log p� ) is that the total space used by the algorithm is linear in s. In the future,
it would be interesting to further speed up step 6 by investing more time in the imple-
mentation of high performance DFTs of general orders s.

Remark 3. For the application to sparse interpolation, it is possible to further speed up
step 5 for the top-level iteration, which is the most expensive step. More precisely, for
a polynomial with t terms, the idea is to take 𝜏=0 and 𝜔 of order ≈tc instead of p−1 for
some constant c with 1<c<3. This reduces log r (and the cost of the top-level iteration)
by a factor of Θ(log p/log t). For the recursive calls, we still need to work with a primi-
tive root of unity 𝜔′ of order p−1 and random shifts.

3. COMPUTING GRAEFFE TRANSFORMS

3.1. Reminders about discrete Fourier transforms
Assume that n∈ℕ is invertible in 𝕂 and let 𝜔∈𝕂 be a primitive n-th root of unity.
Consider a polynomial A= a0+ a1 z+ ⋅ ⋅ ⋅ + an−1 zn−1∈𝕂[z]. Then the discrete Fourier
transform (DFT) of order n of the sequence (ai)0⩽i<n is defined by

DFT𝜔((ai)0⩽i<n)≔(âk)0⩽k<n, âk≔A(𝜔k).

We will write F𝕂(n) for the cost of one discrete Fourier transform in terms of the number
of operations in 𝕂 and assume that n=o(F𝕂(n)). For any i∈{0, . . . ,n−1}, we have

DFT𝜔−1((âk)0⩽k<n)i = �
0⩽k<n

âk𝜔−ik = �
0⩽ j<n

aj �
0⩽k<n

𝜔(j−i)k = nai. (5)

If n is invertible in 𝕂, then it follows that DFT𝜔−1= n−1DFT𝜔−1. The costs of direct and
inverse transforms therefore coincide up to a factor O(n).

If n=n1n2 is composite, 0⩽k1<n1, and 0⩽k2<n2, then we have

âk2n1+k1 = �
0⩽i2<n2

�
0⩽i1<n1

ai1n2+i2𝜔(i1n2+i2)(k2n1+k1)

= �
0⩽i2<n2

𝜔i2k1[[[[[[[[[[[[[[ �
0⩽i1<n1

ai1n2+i2𝜔i1n2k1]]]]]]]]]]]]]]𝜔i2k2n1

= �
0⩽i2<n2

[𝜔i2k1DFT𝜔n2((ai1n2+i2)0⩽i1<n1)k1]𝜔i2(k2n1+k1)

= DFT𝜔n1((𝜔i2k1DFT𝜔n2((ai1n2+i2)0⩽i1<n1)k1)0⩽i2<n2)k2. (6)
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This shows that a DFT of length n reduces to n1 transforms of length n2 plus n2 trans-
forms of length n1 plus n multiplications in 𝕂:

F𝕂(n1n2)⩽n1F𝕂(n2)+n2F𝕂(n1)+O(n).

In particular, if r=O(1), then F𝕂(rn)∼ rF𝕂(n).
It is sometimes convenient to apply DFTs directly to polynomials as well; for this

reason, we also define DFT𝜔(A)≔ (âk)0⩽k<n. Given two polynomials A,B∈𝕂[z] with
deg(AB)<n, we may then compute the product AB using

AB = DFT𝜔−1(DFT𝜔(A)DFT𝜔(B)).

In particular, if M𝕂(n) denotes the cost of multiplying two polynomials of degree <n,
then we obtain M𝕂(n)∼3F𝕂(2n)∼6F𝕂(n).

Remark 4. In Algorithm 1, we note that step 6 comes down to the computation of three
DFTs of length s. Since r is a power of two, this length is of the form s=𝜎 2k for some
k∈ℕ. In view of (6), we may therefore reduce step 6 to 3𝜎 DFTs of length 2k plus 3 ⋅ 2k

DFTs of length 𝜎. If 𝜎 is very small, then we may use a naive implementation for DFTs of
length 𝜎. In general, one may use Bluestein's algorithm [3] to reduce the computation of
a DFT of length 𝜎 into the computation of a product in 𝕂[z]/(z𝜎 −1), which can in turn
be computed using FFT-multiplication and three DFTs of length a larger power of two.

3.2. Graeffe transforms of order two
Let 𝕂 be a field with a primitive (2n)-th root of unity 𝜔. Let P∈𝕂[z] be a polynomial
of degree d=deg P<n. Then the relation (2) yields

G(P)(z2)=DFT𝜔−1(DFT𝜔(P(z))DFT𝜔(P(−z))). (7)

For any k∈{0, . . . , 2n−1}, we further note that

DFT𝜔(P(−z))k=P(−𝜔k)=P(𝜔(k+n)rem2n)=DFT𝜔(P(z))(k+n)rem2n , (8)

so DFT𝜔(P(−z)) can be obtained from DFT𝜔(P) using n transpositions of elements in 𝕂.
Concerning the inverse transform, we also note that

DFT𝜔(G(P)(z2))k=G(P)(𝜔2k)=DFT𝜔2(G(P))k,

for k=0, . . . ,n−1. Plugging this into (7), we conclude that

G(P)=DFT𝜔2
−1((DFT𝜔(P)kDFT𝜔(P)k+n)0⩽k<n).

This leads to the following algorithm for the computation of G(P):

Algorithm 2
Input: P∈𝕂[z] with deg P<n and a primitive (2n)-th root of unity 𝜔∈𝕂

Output: G(P)

1. Compute (P̂k)0⩽k<2n≔DFT𝜔(P)

2. For k=0, . . . ,n−1, compute Ĝk≔ P̂k P̂k+n

3. Return DFT𝜔2
−1((Ĝk)0⩽k<n)

6 IMPLEMENTING THE TANGENT GRAEFFE ROOT FINDING METHOD



PROPOSITION 5. Let𝜔∈𝕂 be a primitive 2n-th root of unity in𝕂 and assume that 2 is invertible
in 𝕂. Given a monic polynomial P∈𝕂[z] with deg P<n, we can compute G(P) in time

G2,𝕂(n)∼3F𝕂(n).

Proof. We have already explained the correctness of Algorithm 2. Step 1 requires one
forward DFT of length 2n and cost F𝕂(2n)=2F𝕂(n)+O(n). Step 2 can be done in linear
time O(n). Step 3 requires one inverse DFT of length n and cost F𝕂(n)+O(n). The total
cost of Algorithm 2 is therefore 3F𝕂(n)+O(n)∼3F𝕂(n). □

Remark 6. In terms of the complexity of multiplication, we obtainG2,𝕂(n)∼(1/2)M𝕂(n).
This gives a 33.3% improvement over the previously best known bound G2,𝕂(n)∼
(2/3)M𝕂(n) that was used in [12]. Note that the best known algorithm for computing
squares of polynomials of degree <n is ∼(2/3)M𝕂(n). It would be interesting to know
whether squares can also be computed in time ∼(1/2)M𝕂(n).

3.3. Graeffe transforms of power of two orders
In view of (4), Graeffe transforms of power of two orders 2m can be computed using

G2m(P)=(G∘ . . .m× ∘G)(P). (9)

Now assume that we computed the first Graeffe transform G(P) using Algorithm 2 and
that we wish to apply a second Graeffe transform to the result. Then we note that

DFT𝜔(G(P))2k=DFT𝜔2(G(P))k= Ĝk (10)

is already known for k=0, . . . ,n − 1. We can use this to accelerate step 1 of the second
application of Algorithm 2. Indeed, in view of (6) for n1=2 and n2=n, we have

DFT𝜔(G(P))2k+1=DFT𝜔2((𝜔i G(P)i)0⩽i<n)k (11)

for k=0,.. .,n−1. In order to exploit this idea in a recursive fashion, it is useful to modify
Algorithm 2 so as to include DFT𝜔2(P) in the input and DFT𝜔2(G(P)) in the output. This
leads to the following algorithm:

Algorithm 3
Input: P∈𝕂[z] with deg P<n, a primitive (2n)-th root of unity 𝜔∈𝕂,

and (Q̂k)0⩽k<n=DFT𝜔2(P)
Output: G(P) and DFT𝜔2(G(P))

1. Set (P̂2k)0⩽k<n≔(Q̂k)0⩽k<n

2. Set (P̂2k+1)0⩽k<n≔DFT𝜔2((𝜔i Pi)0⩽i<n)

3. For k=0, . . . ,n−1, compute Ĝk≔ P̂k P̂k+n

4. Return DFT𝜔2
−1((Ĝk)0⩽k<n) and (Ĝk)0⩽k<n

PROPOSITION 7. Let𝜔∈𝕂 be a primitive 2n-th root of unity in𝕂 and assume that 2 is invertible
in 𝕂. Given a monic polynomial P∈𝕂[z] with degP<n and m⩾1, we can compute G2m(P) in
time

G2m,𝕂(n)∼(2m+1)F𝕂(n).

JORIS VAN DER HOEVEN, MICHAEL MONAGAN 7



Proof. It suffices to computeDFT𝜔2(P) and then to apply Algorithm 3 recursively, m times.
Every application of Algorithm 3 now takes 2F𝕂(n)+O(n)∼2F𝕂(n) operations in 𝕂,
whence the claimed complexity bound. □

Remark 8. In [12], Graeffe transforms of order 2m were directly computed using the
formula (9), using ∼4mF𝕂(n) operations in 𝕂. The new algorithm is twice as fast for
large m.

3.4. Graeffe transforms of arbitrary smooth orders
The algorithms from subsections 3.2 and 3.3 readily generalize to Graeffe transforms
of order rm for arbitrary r⩾2, provided that we have an (r n)-th root of unity 𝜔∈𝕂.
For convenience of the reader, we specified the generalization of Algorithm 3 below,
together with the resulting complexity bounds.

Algorithm 4
Input: P∈𝕂[z] with deg P<n, r⩾2, a primitive (rn)-th root of unity 𝜔∈𝕂,

and (Q̂k)0⩽k<n=DFT𝜔r(P)
Output: Gr(P) and DFT𝜔r(Gr(P))

1. Set (P̂kr)0⩽k<n≔(Q̂k)0⩽k<n

2. For j=1, . . . , r−1, set (P̂kr+ j)0⩽k<n≔DFT𝜔r((𝜔ij Pi)0⩽i<n)

3. For k=0, . . . ,n−1, compute Ĝk≔ P̂k P̂k+n ⋅ ⋅ ⋅ P̂k+(r−1)n

4. Return DFT𝜔r
−1((Ĝk)0⩽k<n) and (Ĝk)0⩽k<n

PROPOSITION 9. Let 𝜔∈𝕂 be a primitive (r n)-th root of unity in 𝕂, where r⩾2 is invertible
in 𝕂. Given a monic polynomial P∈𝕂[z] with degP<n and m⩾1, we can compute Grm(P) in
time

Grm,𝕂(n)∼(rm+1)F𝕂(n).

Proof. Straightforward generalization of Proposition 7. □

COROLLARY 10. Let 𝜔∈𝕂 be a primitive (r1 ⋅ ⋅ ⋅ r𝜏n)-th root of unity in 𝕂, where r1⩾2, . . . ,
r𝜏⩾2 are invertible in𝕂. Given a monic polynomial P∈𝕂[z] with degP<n and m1,...,m𝜏∈ℕ,
we can compute Gr1

m1⋅ ⋅ ⋅r𝜏m𝜏(P) in time

Gr1
m1⋅ ⋅ ⋅r𝜏m𝜏,𝕂(n)∼(r1m1+ ⋅ ⋅ ⋅ + r𝜏m𝜏+𝜏)F𝕂(n).

Proof. Direct consequence of (4). □

Remark 11. In our application to root finding, we are interested in the efficient com-
putation of Graeffe transforms of high order rm. In terms of the size log rm of rm, it is
instructive to observe that the “average cost”

Arm(n)= Grm,𝕂(n)
log rmF𝕂(n)

∼ r
log r
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is minimal for r=3. This suggests that it might be interesting to use Graeffe transforms of
order three whenever possible. In the application of Algorithm 1, this would lead us to
take primes of the form p=𝜎 ⋅2m ⋅3l+1, with 𝜎 small and 𝜎 ⋅2m close to d. This still allows
us to use radix 2 FFTs, while at the same time benefitting from radix 3 Graeffe transforms.

3.5. Truncated Fourier transforms
If 𝕂=𝔽q is a fixed finite field, then DFTs are most efficient for sizes n that divide q−1. For
our root finding application, it is often convenient to take q=3 ⋅ 230+1, in which case n
should be a power of two or three times a power of two. The truncated Fourier transform
was developed for the multiplication of polynomials such that the degree of the product
does not have a nice size n of this type. It turns out that we may also use it for the efficient
computation of Graeffe transforms of polynomials of arbitrary degrees. Moreover, the
optimizations from the previous subsections still apply.

Let us briefly describe how the truncated Fourier transform can be used for the
computation of Graeffe transforms of power of two orders. With the notations from sub-
sections 3.2 and 3.3, we assume that 2n=2𝛽 is a power of two as well and that we wish
to compute the Graeffe transform of a polynomial P of degree deg P< t with n/2⩽ t<n.
Let [i]𝛽 denote the reversal of a binary number i∈{0, . . . , 2n −1} of 𝛽 bits. For instance,
[3]4=12 and [5]6=40. Then the truncated Fourier of P at order T⩾ t is defined by

TFT𝜔,T(P)≔�P�𝜔[0]𝛽�,P�𝜔[1]𝛽�, . . . ,P�𝜔[T−1]𝛽��.

It has been shown in [14] that P̃≔TFT𝜔,T(P) and P=TFT𝜔,T
−1 (P̃) can both be computed in

time ∼(T/n)F𝕂(n). More generally, for direct transforms, one may compute

TFT𝜔,Δ,T(P)≔�P�𝜔[Δ]𝛽�,P�𝜔[Δ+1]𝛽�, . . . ,P�𝜔[Δ+T−1]𝛽��

in time∼(T/n)F𝕂(n), whenever 0⩽Δ<Δ+T⩽n. For generalizations to arbitrary radices,
we refer to [25].

Taking T=2 t, we note that

P�𝜔[2k+1]𝛽�=P�𝜔[2k]𝛽+n/2�=P�−𝜔[2k]𝛽�

for k=0, . . . , t − 1. This provides us with the required counterpart of (8) for retrieving
TFT𝜔,2t(P(−x)) efficiently from TFT𝜔,2t(P). The relation (10) also has a natural counter-
part:

TFT𝜔,2t(G(P))k=G(P)�𝜔[k]𝛽�=G(P)�𝜔2[k]𝛽−1�=TFT𝜔2,t(G(P))k,

for k=0, . . . , t−1. This leads to the following refinement of Algorithm 3:

Algorithm 5
Input: P∈𝕂[z] with deg P< t⩽n=2𝛽−1,

a primitive (2n)-th root of unity 𝜔∈𝕂, and (Q̂k)0⩽k<t=TFT𝜔2,t(P)
Output: G(P) and TFT𝜔2,t(G(P))

1. Set (P̂k)0⩽k<t≔(Q̂k)0⩽k<t

2. Set (P̂k+t)0⩽k<t≔TFT𝜔,t,t(P)

3. For k=0, . . . , t−1, compute Ĝ2k≔ P̂2k P̂2k+1

4. Return TFT𝜔2,t
−1 ((Ĝ2k)0⩽k<t) and (Ĝ2k)0⩽k<t
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PROPOSITION 12. Let 𝜔∈𝕂 be a primitive 2n-th root of unity in 𝕂, where 2n=2𝛽, and assume
that 2 is invertible in 𝕂. Given a monic polynomial P∈𝕂[z] with n/2⩽degP<t⩽n and m⩾1,
we can compute G2m(P) in time

G2m,𝕂(t;n)∼
t
n (2m+1)F𝕂(n).

Proof. Straightforward adaptation of the proof of Proposition 7, while using [14]. □

3.6. Taylor shifts
In step 3 of Algorithm 1, we still need an algorithm to compute the Taylor shift P(z+𝜏).
If the characteristic of 𝕂 exceeds d, then it is (not so) well known [1, Lemma 3] that this
can be reduced to a single polynomial multiplication of degree d using the following
algorithm:

Algorithm 6
Input: P∈𝕂[z] of degree d<char𝕂 and 𝜏∈𝕂

Output: P(z+𝜏)

1. L≔0!P0+1!P1z+ ⋅ ⋅ ⋅ +d!Pd zd

2. L̃≔zd L(1/z)

3. E≔1+𝜏 z+ 1
2! 𝜏

2z2+ ⋅ ⋅ ⋅ + 1
d! 𝜏

d zd

4. Π̃≔ L̃E rem zd+1

5. Π≔zdΠ̃(1/z)

6. Return 1
0! Π0+

1
1! Π1z+ ⋅ ⋅ ⋅ + 1

d! Πd zd

It is interesting to observe that Taylor shifts can still be computed in time O(M(d)) in
small characteristic, as follows:

Algorithm 7
Input: P∈𝕂[z] of degree d⩾p=char𝕂>0 and 𝜏∈𝕂

Output: P(z+𝜏)

1. Define zi=zp i
for i=0, . . . ,k where k=⌊log d/log p⌋

2. Rewrite P= P̂(z0, . . . ,zk)∈𝕂[z0, . . . ,zk] with degzi P<p for i=0, . . . ,k−1

3. For i=0, . . . ,k, replace P̂≔ P̂�z0, . . . ,zi−1,zi+𝜏pi
,zi+1, . . . ,zk�

4. Return P̂�z,zp, . . . ,zpk
�

4. IMPLEMENTATION AND BENCHMARKS
We have implemented the tangent Graeffe root finding algorithm (Algorithm 1) in C
with the optimizations presented in section 3. Our C implementation supports primes of
size up to 63 bits. In what follows all complexities count arithmetic operations in 𝔽p.

In Tables 1 and 2, the input polynomial P(z) of degree d is constructed by choosing
d distinct values 𝛼i∈𝔽p for 1⩽ i⩽d at random and creating P(z)=∏i=1

d (z−𝛼i). We will
use p=3×29×256+1, a smooth 63 bit prime. For this prime M(d) is O(d log d).

One goal we have is to determine how much faster the Tangent Graeffe (TG) root
finding algorithm is in practice when compared with the Cantor-Zassenhaus (CZ) algo-
rithm which is implemented in many computer algebra systems. In Table 1 we present
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Our sequential TG implementation in C Magma CZ timings
d total first %roots step 5 step 6 step 9 V2.25-3 V2.25-5

212−1 0.11s 0.07s 69.8% 0.04s 0.02s 0.01s 23.22s 8.43
213−1 0.22s 0.14s 69.8% 0.09s 0.03s 0.01s 56.58s 18.94
214−1 0.48s 0.31s 68.8% 0.18s 0.07s 0.02s 140.76s 44.07
215−1 1.00s 0.64s 69.2% 0.38s 0.16s 0.04s 372.22s 103.5
216−1 2.11s 1.36s 68.9% 0.78s 0.35s 0.10s 1494.0s 234.2
217−1 4.40s 2.85s 69.2% 1.62s 0.74s 0.23s 6108.8s 534.5
218−1 9.16s 5.91s 69.2% 3.33s 1.53s 0.51s NA 1219.
219−1 19.2s 12.4s 69.2% 6.86s 3.25s 1.13s NA 2809.

Table 1. Sequential timings in CPU seconds for p=3⋅29 ⋅256+1 and using s∈[2d, 4d)

timings comparing our sequential implementation of the TG algorithm with Magma's
implementation of the CZ algorithm. For polynomials in 𝔽p[z], Magma uses Shoup's
factorization algorithm from [31]. For our input P(z), with d distinct linear factors, Shoup
uses the Cantor–Zassenhaus equal degree factorization method. Recall that the average
complexity of TG is O(M(d)(log (p/s)+log d)) and of CZ is O(M(d) log p log d). We also
wanted to attempt a parallel implementation. To do this we used the MIT Cilk C com-
piler from [10]. The Cilk C compiler provides a simple fork-join model of parallelism.
Unlike the CZ algo- rithm, TG has no gcd computations that are hard to parallelize. We
present some initial parallel timing data in Table 2.

The timings in Table 1 are sequential timings obtained on a a Linux server with an
Intel Xeon E5-2660 CPU with 8 cores. In Table 1 the time in column “first” is for the first
application of the TG algorithm (steps 1–9 of Algorithm 1) showing that it obtains about
69% of the roots. The time in column “total” is the total time for the algorithm. Columns
step 5, step 6, and step 9 report the time spent in steps 5, 6, and 9 in Algorithm 1 and do
not count time in the recursive call in step 10.

The Magma column timing is for Magma's Factorization command. The timings
for Magma version V2.25-3 suggest that Magma's CZ implementation involves a subal-
gorithm with quadratic asymptotic complexity. Indeed it turns out that the author of the
code implemented all of the sub-quadratic polynomial arithmetic correctly, as demon-
strated by the second set of timings for Magma in column V2.25-5, but inserted the d
linear factors found into a list using linear insertion! Allan Steel of the Magma group
identified and fixed the offending subroutine for Magma version V2.25-5. The timings
show that TG is faster than CZ by a factor of 76.6 (=8.43/0.11) to 146.3 (=2809/19.2).

Our parallel tangent Graeffe implementation in Cilk C
d total first step 5 step 6 step 9

219−1 18.30s(9.616s) 11.98s(2.938s) 6.64s(1.56s) 3.13s(0.49s) 1.09s(0.29s)
220−1 38.69s(12.40s) 25.02s(5.638s) 13.7s(3.03s) 6.62s(1.04s) 2.40s(0.36s)
221−1 79.63s(20.16s) 52.00s(11.52s) 28.1s(5.99s) 13.9s(2.15s) 5.32s(0.85s)
222−1 166.9s(41.62s) 107.8s(23.25s) 57.6s(11.8s) 28.9s(4.57s) 11.7s(1.71s)
223−1 346.0s(76.64s) 223.4s(46.94s) 117.s(23.2s) 60.3s(9.45s) 25.6s(3.54s)
224−1 712.7s(155.0s) 459.8s(95.93s) 238.s(46.7s) 125.s(19.17) 55.8s(7.88s)
225−1 1465.s(307.7s) 945.0s(194.6s) 481.s(92.9s) 259.s(39.2s) 121.s(16.9s)

Table 2. Real times in seconds for 1 core (8 cores), p=3⋅29 ⋅256+1, and using s∈[2d, 4d)
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4.1. Implementation notes
To implement the Taylor shift P(z+𝜏) in step 3, we used the O(M(d)) method from [1,
Lemma 3]. The better known method presented in [11] is O(M(d) log d). For step 5 we
use Algorithm 3 as presented. It has complexity O(M(d) log p). To evaluate A(z),A′(z)
and B(z) in step 6 in O(M(s)) we used the Bluestein transformation [3]. In step 9 to
compute the product Q(z)=Π𝛼∈S (z−𝛼), for t=∣S∣ roots, we used the O(M(t) log t) tree
multiplication algorithm [11]. The division in step 10 is done in O(M(d)) with the fast
division.

The sequential timings in Tables 1 and 2 show that steps 5, 6 and 9 account for about
91% of the total time. We parallelized these three steps as follows. For step 5, the two
forward and two inverse FFTs are done in parallel. We also parallelized our radix 2
FFT by parallelizing recursive calls for size n⩾217 and the main loop in blocks of size
m⩾218 as done in [26]. For step 6 there are three applications of Bluestein to compute
A(𝜔ir), A′(𝜔ir) and B(𝜔ir). We parallelized these (thereby doubling the overall space
used by our implementation). The main computation in the Bluestein transformation is
a polynomial multiplication of two polynomials of degree s. The two forward FFTs are
done in parallel and the FFTs themselves are parallelized as for step 5. For the product in
step 9 we parallelize the two recursive calls in the tree multiplication for large sizes and
again, the FFTs are parallelized as for step 5.

To improve parallel speedup we also parallelized the polynomial multiplication in
step 3 and the computation of the roots in step 8. Although step 8 is O(∣S∣), it is relatively
expensive because of two inverse computations in 𝔽p. Because we have not parallelized
about 5% of the computation the maximum parallel speedup we can obtain is a factor
of 1/(0.05+0.95/8)=5.9. The best overall parallel speedup we obtained is a factor of
4.6=1465/307.7 for d=225−1.

In Cilk, for each recursive C subroutine we wish to parallelize, one first needs to make
a parallel version of that routine. For large recursive calls, the parallel version does them
in parallel. For smaller recursive calls, the parallel version needs to call the sequential
version of the code to avoid the Cilk process management overhead. The cutoff for the
size of the input for which we need to use the sequential code has to be determined by
experiment.
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