
Polynomial Division using Dynamic Arrays,
Heaps, and Packed Exponent Vectors ?

Michael Monagan and Roman Pearce

Department of Mathematics, Simon Fraser University
Burnaby, B.C. V5A 1S6, CANADA.

mmonagan@cecm.sfu.ca and rpearcea@cecm.sfu.ca

Abstract. A common way of implementing multivariate polynomial
multiplication and division is to represent polynomials as linked lists
of terms sorted in a term ordering and to use repeated merging. This
results in poor performance on large sparse polynomials.

In this paper we use an auxiliary heap of pointers to reduce the number
of monomial comparisons in the worst case while keeping the overall
storage linear. We give two variations. In the first, the size of the heap is
bounded by the number of terms in the quotient(s). In the second, which
is new, the size is bounded by the number of terms in the divisor(s).

We use dynamic arrays of terms rather than linked lists to reduce storage
allocations and indirect memory references. We pack monomials in the
array to reduce storage and to speed up monomial comparisons. We give
a new packing for the graded reverse lexicographical ordering.

We have implemented the heap algorithms in C with an interface to
Maple. For comparison we have also implemented Yan’s “geobuckets”
data structure. Our timings demonstrate that heaps of pointers are com-
parable in speed with geobuckets but use significantly less storage.

1 Introduction

In this paper we present and compare algorithms and data structures for poly-
nomial division in the ring P = F [x1, x2, ..., xn] where F is a field. We are
interested in (i) exact division of f ∈ P by a single polynomial g ∈ P, that is
testing whether g|f and if so, computing the quotient q = f/g, (ii) exact divi-
sion of f ∈ P by a polynomial g ∈ P modulo a triangular set of polynomials in
F [xi, xi+1, ..., xn], and (iii) computing the remainder of f ∈ P divided by a set
of polynomials {g1, g2, ..., gs} ∈ P. Since many algorithms in computer algebra
use modular methods for efficiency, that is, they compute modulo primes, we
will want to divide over characteristic p as well as characteristic 0.

We consider distributed polynomial representations that sort the terms of the
polynomial with respect to a monomial ordering. See (3) or (4) for background
material on monomial orderings. The orderings that we are most interested in
? This work was supported by NSERC of Canada and the MITACS NCE of Canada

are the pure lexicographical ordering (lex), the graded lexicographical ordering
(grlex), and the graded reverse lexicographical ordering (grevlex). In the grlex
ordering one first sorts the terms by total degree and then by lexicographical
order. For example, the polynomial

−9x4 − 7x3yz + 6x2y3z + 8y2z3

when written with terms in descending grlex order with x > y > z is

6x2y3z − 7x3yz + 8y2z3 − 9x4.

The data structure used to represent polynomials will have a direct impact on
the efficiency of the division algorithm. The data structure used by the Axiom
system (7) for Gröbner basis computations is the SDMP (Sparse Distributed
Multivariate Polynomial) data structure. This is a linked list of terms where
each term is a pair (c, e), where c is a (pointer to) a coefficient and e is a pointer
to the exponent vector, which is an array of machine integers. Using 〈a, b, c, ...〉
to denote an array, [a, b, c, ...] to denote a linked list, and (c, e) to denote a pair
of pointers, the polynomial above would be represented as

[(6, 〈2, 3, 1〉), (−7, 〈3, 1, 1〉), (8, 〈0, 2, 3〉), (−9, 〈4, 0, 0〉)].

Recall the division algorithm. Following the notation of Cox, Little, and
O’Shea (3), we let LT (f), LM(f), and LC(f) denote the leading term, the
leading monomial, and the leading coefficient of a polynomial f , respectively.
These depend on the term ordering but satisfy LT (f) = LC(f)LM(f).

The Division Algorithm.
Input: f, g1, g2, ..., gs ∈ F [x1, ..., xn], F a field.
Output: q1, q2, ..., qs, r ∈ F [x1, ...xn] satisfying f = q1g1 +q2g2 + ...+qsgs +r.

1: Set (q1, q2, ..., qs) := (0, 0, ..., 0).
2: Set p := f .
3: While p 6= 0 do

4: Find the first gi s.t. LM(gi)|LM(p).
5: If no such gi exists then set r := r + LT (p) and p := p− LT (p)
6: else set (qi, p) := (qi + t, p− t× gi) where t = LT (p)/LT (gi).

7: Output (q1, q2, ..., qs, r).

Remark: If one wishes to test if (g1, ..., gs)|f with 0 remainder then Step 5
should be modified to stop execution and output false.

If polynomials are represented as linked lists of terms sorted in descending
order in the term ordering then accessing the leading term LT (f) takes constant
time, the operation p−LT (p) (link to the remaining terms of p) is constant time
and r +LT (p) can be done in constant time by maintaining a pointer to the last
term of r. The most expensive step is the subtraction p − t × gi. This requires
a “merge” – one simultaneously walks down the linked list of terms in p and
the linked list of terms in gi comparing monomials. In the worst case the merge
must walk to the end of both p and gi.

1.1 Storage management and non-local memory references.

We identify two sources of inefficiency in the division algorithm when the SDMP
data structure is used. The first is the many intermediate pieces of storage that
need to be allocated when we multiply t gi, for example, storage for new exponent
vectors in t gi. The second is the memory references that occur during the merge
when we walk down the linked lists and, for each term, link to the exponent
vectors to compare monomials. These memory references cause a loss in efficiency
when the polynomials are too large to fit inside the computer’s cache. On a 2.4
GHz AMD Opteron 150 with 400 MHz RAM we measured the loss of speed at
a factor of 6.

These two problems can be eliminated by representing polynomials as arrays
with the coefficients and exponents stored in place. For example, 6x2y3z−7x3yz+
8y2z3 − 9x4 could be stored as

〈 6, 2, 3, 1,−7, 3, 1, 1, 8, 0, 2, 3,−9, 4, 0, 0 〉.

The difference p − tgi can be computed efficiently by merging with two arrays:
one, p, that we are copying terms out of, and another, p′, that we are forming
the difference p− t× gi inside. When the merge is complete we interchange the
roles of p and p′ for the next iteration of the division algorithm. If p′ is too small
to store all of the terms of p and −t × gi we allocate a new p′ with 50% more
terms than are needed to reduce the chance of another allocation in the future.

But, there is a loss of efficiency; instead of copying pointers (one word) we
must now copy exponent vectors (n words). This loss can be reduced by pack-
ing multiple exponents into each word. For example, Macaulay (5) uses dy-
namic arrays and packed exponent vectors. Macaulay identifies the monomials
1, z, y, x, z2, zy, y2, zx, yx, x2, ... with non-negative integers 0, 1, 2, 3, ... to encode
each monomial as an integer. The polynomial 6x2y3z − 7x3yz + 8y2z3 − 9x4

would be represented as an array of 8 words

〈 +6, 63,−7, 49,+8, 36,−9, 33 〉.

This encoding gives a very compact representation with fast monomial compar-
isons, but monomial multiplication and division are slow. In (1), Bachmann and
Schönemann compare different monomial packings including the Macaulay en-
coding. They show that packing exponent vectors produces a modest speedup
(a factor of 1.5 to 2) for Gröbner basis computations modulo a machine prime
with the SDMP data structure. They also show that simpler packing schemes
are more efficient overall than the Macaulay encoding.

1.2 The problem of too many monomial comparisons.

When using merging to subtract p − tgi, a serious inefficiency may occur when
#p, the number of terms in p, is much larger than #gi, the number of terms
in a divisor gi. Consider g = (x + 1), q = yn + ... + y2 + y and let p = gq =
xyn + ...+x+yn + ...+y. If we compute p by adding x q to q using merging, the

merge does n comparisons which is efficient. In dividing f by g the first quotient
is yn and we subtract yn g = xyn + yn from p = xyn + ...+xy + yn + ...+ y. The
merge does n comparisons to find yn in p. The full division does n such merges
so the total number of comparisons is O(n2), much worse than multiplication.

One solution is to represent the polynomial p as a binary search tree. Then
LT(p) can be computed with O(log #p) monomial comparisons and the difference
p− tgi can be computed with O(#gi log #p) comparisons. However binary trees
suffer from the same cache performance problems as linked lists.

A very nice solution is the “geobucket” data structure of Yan (12), which is
used by the Singular (6) computer algebra system and others. Geobuckets are
described in detail in Section 2. In the geobucket data structure a polynomial
p with #p terms is represented by an array of O(log #p) “buckets” where the
i’th bucket pi is a linked list of at most 2i terms. To subtract t× gi from p one
subtracts t × gi from the i’th bucket of p where 2i−1 < #gi ≤ 2i. Subtraction
is done by merging two linked lists. The idea is that asymptotic efficiency is not
lost when we merge linked lists with a similar number of terms, e.g., their length
differs by at most a factor of two.

In this paper we use an auxiliary “heap of pointers” instead. When dividing
p by {g1, g2, ..., gs} we maintain a heap of pairs with quotient terms and pointers
back into the divisors {g1, g2, ..., gs}. The pointers indicate which terms have yet
to be multiplied and subtracted from p.

Suppose we are dividing f by g. Let f = gq + r where q is the quotient
and r the remainder. With geobuckets, division does O(#g #q(log #g+log #q))
comparisons (12). If we use a heap, division does O(#g #q log #q) comparisons.
A second key advantage of using a heap is that it requires only O(#q) space,
and, if we need to compute the remainder, O(#r) space to write down the
remainder. By comparison, the simple merge and geobucket algorithms may
require O(#g #q + #r) space. The main disadvantage of using a heap is that
for dense polynomials the merge and geobucket algorithms are better; they do
only O(#g #q) comparisons. A third advantage of using a heap is that we delay
all coefficient arithmetic until we need to do it. This can result in significant
speedups when we want to test if g divides f but g does not divide f .

The idea of using a heap for sparse polynomial arithmetic was first investi-
gated by Johnson in 1974 (8). Heaps were used in Altran (2), one of the earliest
computer algebra systems. We are not aware of any other computer algebra sys-
tem that has used heaps for polynomial arithmetic despite their good asymptotic
performance. Heaps were not considered by Stoutemyer in (11) which, as far as
we are aware, is the only systematic experiment ever done comparing different
polynomial data structures on a computer algebra system’s test suite.

1.3 Organization of the Paper

In Section 2 we describe how we encode and pack monomials for different term
orderings. Our packing for graded reverse lexicographical order is new. In Section
3 we give the main algorithms that use heaps of pointers. Two algorithms are
presented. The first algorithm bounds the size of the heap by the number of terms

in the quotients {q1, q2,, qs}. In the second algorithm, the size of the heap is
bounded by the number of terms in the divisors {g1, g2, ..., gs}. This algorithm
is new, and it is particularly useful for polynomial GCD computations because
the gcd G of two polynomials A and B typically has fewer terms, often much
fewer, than the quotients A/G and B/G.

We have implemented the division algorithms in the C programming lan-
guage. We create polynomials in Maple and call our C code from Maple using
Maple’s foreign function interface (see Ch. 8 of (10)). For comparison we have
also implemented Yan’s geobucket data structure using dynamic arrays with
packed exponent vectors. Details of our geobucket implementation are given in
Section 2. In Section 4 we give some benchmarks comparing the simple merging
algorithm with Yan’s geobucket representation and our heap algorithms, using
packed and unpacked exponent vectors.

Our conclusions may be summarized as follows. Simple merging is not com-
petitive with either heaps or geobuckets on sparse problems. The heap algo-
rithms are as fast as geobuckets but use far less memory. Geobuckets do the
fewest monomial comparisons, but heaps tend to be faster on large problems
because they use cache more efficiently. For all algorithms, packing exponents
significantly improves performance, especially on 64-bit machines.

2 Dynamic Array Implementation

Consider the minimum amount of work that a sparse algorithm must do. As
noted by Johnson (8), a multiplication fg must construct all #f#g products
of terms because the monomials generated may be distinct. These terms are
merged to form the result. Similarly, to divide f by g we construct the quotient
q incrementally while subtracting qg from f , merging #f + #q(#g − 1) terms
to do the division. Note, it is #g − 1 and not #g because −q × LT (g) cancels
terms so only −q × (g − LT (g)) needs to be merged. Let r = f − qg. The
number of monomial divisions attempted is #q + #r. To divide f by {g1, ..., gs}
with quotients {q1, ..., qs} we merge #f +

∑s
i=1 #qi(#gi−1) terms and attempt∑s

i=1(#qi)i + (#r)s monomial divisions if for each term we loop through the
divisors in order.

Sorting the result imposes an additional cost in monomial comparisons if a
function is called to compare terms with respect to an ordering. The nm terms
of a product can be naively sorted using O(nm log(nm)) comparisons, but if the
polynomials are sorted we can exploit that fact to do only O(nm log(min(n, m)))
comparisons. In either case the logarithmic factor is significant – it means that
monomial comparisons dominate sparse polynomial computations when the cost
of coefficient arithmetic is low.

2.1 Packed Monomial Representations

After an initial experiment we decided to base our monomial representations
on Bachmann and Schönemann’s scheme (1), which is used in Singular. The

defining feature of this scheme is that a monomial stores two components: a
(possibly weighted) total degree and a vector of exponents. An inline function
compares the degree and the exponent vector in lexicographic order, and two
global variables invert the results of these comparisons separately. To compare
in reverse lexicographic order we reverse the variables and invert all the com-
parisons. Figure 1 shows the unpacked representations of x2y3z4 with respect
to four common orders with x > y > z. Shading is used to indicate where the
results of comparisons are inverted.

Fig. 1. Unpacked x2y3z4 with x > y > z.

reverse lexicographic order graded reverse lexicographic order

graded lexicographic orderlexicographic order

deg

deg zyxx y z
32 4

234

29

9 4 3 2

4

z

3

y x xyz

Fig. 2. Packed x2y3z4 with x > y > z.

5
deg
9

weighted lexicographic order

2
zyx

9

graded lexicographic order

x y z
2 3 4

deg z
4

x
2

y
3

z
4

weighted reverse lexicographic order

weight xyz
234w

32
yxweight

w

x+y

graded reverse lexicographic order

lexicographic order

43

To pack monomials we use bitwise or and shift operations on machine words
so that byte order is automatically taken into account. Our diagrams use big-
endian format. We reserve the most significant bit of each exponent as a guard bit
for monomial division. This operation subtracts machine words and uses a bit-
mask to detect if an exponent is negative. The mask also stores the length of the
monomials which is needed by every routine. Weighted orders use the entire first
word for the weighted degree since this can be large. We restrict the weights to
non-negative integers so that the weighted degree is also a non-negative integer.

For graded orders we use the same number of bits for the total degree as for
each exponent so that all monomials up to the maximum degree are encoded
efficiently. Note that it is especially easy to determine an optimal packing for
these orders using bounds on the total degree. If the polynomials are already
sorted with respect to the order then we can examine their leading terms and
repack the polynomials in linear time.

Figure 2 shows the packed representations of x2y3z4 for five monomial or-
ders with two exponents per machine word. Notice how monomial comparisons
are reduced to lexicographic and reverse lexicographic comparisons of machine
words. The encodings should all be straightforward except for graded reverse
lexicographic order. In that case recall that the total degree only requires as

many bits as a single packed exponent. The first word of the monomial, which
must be compared lexicographically unlike the rest, would contain relatively
little information if it only stored the total degree.

Our first idea was to pack more information into the first word to decide
monomial comparisons. Observe that the matrices A and B in Figure 2.1 both
describe graded reverse lexicographic order in four variables. Let V be an ex-
ponent vector. Then AV is encoded in the first |V | words of the unpacked rep-
resentation. The matrix B is obtained from A by adding the previous rows of
A to each row of A, eliminating all negative entries. Thus BV contains only
non-negative integers that are compared lexicographically. We pack as much of
BV as possible into the first word of the monomial.

Fig. 3. Matrix representations of graded reverse lexicographic (grevlex) order.

A =

2664
1 1 1 1
0 0 0 −1
0 0 −1 0
0 −1 0 0

3775 B =

2664
1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

3775

Fig. 4. Packed representations of x1y2z3t4u5v6w7 in grevlex order with 4 exponents
per word. The exponents for w, v, u, and x are redundant. In the second representation,
all monomial comparisons can be decided on the basis of the first seven exponents, after
looking at only two words.

7
w

6
v

5
u

2
y

1
x

3
z

4
t

w
7

v
6

u
5

t
4

y
2

x
13

zx..tx..ux..v

x..tx..ux..v

deg
10152128

28 21 15 10
deg

However, this does not actually fix the problem since now the second word
of the monomial contains information that can be derived from the first. Refer
to the top of Figure 4, where w = 7, v = 6 and u = 5 are known from 28 − 21,
21−15, and 15−10. Thus the second word now provides only one exponent with
new information, but we can easily fix this by moving all but the last exponent of
the second word to the end of the monomial, as in the bottom of Figure 4. Then
for n variables the first n exponents encode all of the information necessary to
decide monomial comparisons in grevlex order.

One might wonder why we do not simply encode the vector BV . The reason is
that for monomial division one must unpack and decode quotients to check that
they are valid. An example is given below. In fact, we tried this representation
initially and found that while it was quite compact for grevlex order, weighted
orders were inefficient and reverse lexicographic order could not be implemented.
Eventually we decided to store all of the exponents explicitly, and Bachmann
and Schönemann’s scheme was the obvious choice.

Example 1. Consider x2 and y3 in graded reverse lexicographic order with x >
y > z. The exponent vectors are U = [3, 0, 0] and V = [0, 2, 0] respectively,
and the matrix B is shown below. The difference BU −BV is non-negative even
though U − V = [3,−2, 0].

B =

24 1 1 1
1 1 0
1 0 0

35 BU =

24 3
3
3

35 BV =

24 2
2
0

35 BU −BV =

24 1
1
3

35

2.2 Iterated Merging with Dynamic Arrays

The classical approach to polynomial arithmetic is an iterated merge. To multiply
f by g we compute

∑#f
i=1 fig by adding each fig to the previous partial sum using

a merge. Similarly, to divide f by g we compute terms of the quotient q while
subtracting each qig from an intermediate polynomial p, which is initially f .

Our first goal was to implement these algorithms while avoiding memory
allocation. We use two global arrays or “merge buffers” p and p′ which grow
dynamically, and all merging takes place from p into p′. If p′ does not have suf-
ficient storage to hold the objects being merged then it is enlarged. To amortize
this cost we allocate a new p′ with 50% more storage than required. To further
amortize the cost of memory allocation we reuse p and p′ in the next call to an
algorithm rather than free them each time.

Fig. 5. Division using two dynamic arrays. The fourth term of p produced the quotient
term y, and we are beginning to merge the rest of p (two terms) with −y times the rest
of g (two terms). The buffer p′ is large enough to store the result. Otherwise we would
enlarge it to six terms.

2

1

2−3
buffer p’

y22y divisor g

quotient q7y

x y25x435x22 3 y11

5x22 4x3 2yx5

buffer p

remainder r

7y 13

y

We describe our implementation of the division algorithm. To divide f by
g, we copy f into p and increment along the terms of p until we reach the end
or we find a term pi that is divisible by LT (g). We copy the previous terms of
p to the remainder and if a reducible term was found, say pi = qjLT (g), we
merge the rest of p with −qj(g−LT (g)) into p′, as shown in Figure 5. The terms
of −qj(g − LT (g)) are constructed during the merge. Finally we interchange p
and p′ by swapping pointers so that p′ becomes p for the next iteration of the
algorithm and the storage for p is recycled.

The complexity of this approach was analyzed by Johnson (8). He observed
that for a multiplication fg where f has n terms, g has m terms, and fg has nm

terms, adding each fig to the partial sum can require up to im−1 monomial com-
parisons, making the total number of comparisons

∑n
i=2 im − n + 1 ∈ O(n2m).

A similar result holds for division when the quotient has n terms, the divisor has
m terms, and the dividend has nm terms. Thus iterated merging can be very
bad when the quotient is large.

It is interesting to note that O(n2m) comparisons may be required even
if the product or dividend does not have O(nm) terms, if terms introduced
by the first n/2 summands are canceled by the last n/2 summands. We call
this an intermediate blowup in the number of terms. One unfortunate feature of
algorithms that add each fig or qig to a partial sum is that they allocate storage
for all of these terms even when the end result is zero, as it will be for exact
division. In Section 3 we will see that the heap algorithms avoid this problem
by merging all of the partial products simultaneously.

For sparse polynomials an iterated merge uses about 2nm terms of stor-
age where nm is the size of the largest intermediate sum. If we always enlarge
the buffers by 50% then we will use storage for about 3nm terms on average.
Quotient(s) and the remainder require additional storage if they are needed.

2.3 Divide and Conquer Merging – Geobuckets

A well-known alternative to iterated merging is divide-and-conquer merging,
which is often used for polynomial multiplication. Let f have n terms and let
g have m terms. If we compute

∑n
i=1 fig by summing the first n/2 and the

last n/2 summands recursively and adding their sums, then at most C(n) ≤
2C(n/2) + nm − 1 ∈ O(nm log n) monomial comparisons are required. The
method is efficient because it merges polynomials of similar size.

But how much memory is required? If each recursive call allocates memory
for its own result then we can solve the same recurrence to find that O(nm log n)
memory is needed. This is an order of magnitude larger than any possible
result. Instead we could reuse a set of geometrically increasing buckets with
{2m, 4m, . . . , nm/2} terms for polynomials that we are waiting to merge, plus
two arrays with nm and nm/2 terms for polynomials that we are currently
merging. This simple “geobucket” algorithm is described below.

Geobucket Multiplication.
Input: f = f1 + · · ·+ fn, g = g1 + · · ·+ gm.
Output: fg.

1: Allocate buckets with {2m, 4m, . . . , 2dlog2(n)e−1m} terms.
2: Allocate dynamic arrays p and p′.
3: For i := 1 while i ≤ n do

4: Compute fig and store it in p.
5: If i < n merge p and fi+1g into p′ and swap p and p′.
6: Set i := i + 2.
7: For j := 1 while bucket[j] 6= 0 do

8: Merge p and bucket[j] into p′ and swap p and p′.

9: Set bucket[j] := 0 and j := j + 1.
10: If i ≤ n set bucket[j] := p and p := 0.

11: For j := 1 to 2dlog2(n)e−1 do
12: If bucket[j] 6= 0 merge p and bucket[j] into p′ and swap p and p′.

13: Output p.

Thus f1g and f2g are merged and their sum is stored in bucket 1, then f3g
and f4g are merged and their sum is merged with f1g+f2g and stored in bucket
2, then f5g and f6g are merged and their sum is stored in bucket 1, and so
on, continuing in the manner of a depth-first search. If n = 2k it is easy to see
that O(nm) storage is used. The buckets contain (n− 2)m terms, the array that
stores the result will need nm terms, but the other array can have nm/2 terms.
The total amount of storage required is 2.5nm terms – only 50% more than for
an iterated merge. If we always grow the arrays by an extra 50% then we can
expect to allocate storage for about 3.25nm terms in total.

Geobuckets were proposed by Yan (12) with three significant improvements.
First, Yan’s buckets have a small base and ratio that are independent of any
problem to ensure good performance when objects of varying sizes are added to
the geobucket. In the algorithm above the base is 2m and the ratio is 2, so objects
with fewer than m terms could be added more efficiently with a smaller bucket.
Second, Yan always tries to store p + bucket[j] in bucket[j] if possible to avoid
creating bucket[j + 1]. This decreases the amount of memory and increases the
likelihood of combining terms on dense problems, resulting in fewer monomial
comparisons. Finally, Yan describes a reasonably efficient scheme for coalescing
the leading terms of the buckets to compute the leading term of the polynomial.
This allows us to run the division algorithm with the intermediate polynomial p
stored as a geobucket. We state Yan’s algorithm below for completeness.

Geobucket Leading Term.
Input: polynomial f stored in bucket[1 . . . k].
Output: LT (f) or FAIL when f = 0, set bucket[1 . . . k] := f − LT (f).
1: Set j := 0, the bucket containing the leading term.
2: For i := 1 while i ≤ k do

3: If bucket[i] 6= 0 and (j = 0 or LM(bucket[i]) > LM(bucket[j]))
4: Set j := i

5: else if bucket[i] 6= 0 and LM(bucket[i]) = LM(bucket[j])
6: Set LC(bucket[j]) := LC(bucket[j]) + LC(bucket[i]).
7: Remove LT (bucket[i]) from bucket[i].

8: Set i := i + 1.
9: If j = 0 then f = 0 so output FAIL.
10: If LC(bucket[j]) = 0 remove this term from bucket[j] and goto step 1.
11: Set t := LT (bucket[j]).
12: Remove LT (bucket[j]) from bucket[j].
13: Output t.

We implemented Yan’s geobuckets using a single dynamic array so that its
storage could be reused in subsequent calls. We chose a ratio of two because
that is optimal for merging and our smallest bucket (the base) has four terms.
We found that geobuckets performed very well, often using fewer monomial
comparisons than expected.

For a sparse multiplication producing nm terms geobuckets do O(nm log n)
comparisons and store about 3.6nm terms. This number can be derived as fol-
lows. The arrays (merge buffers) require nm and nm/2 terms, but we will al-
locate an extra 50% for each. The buckets have nm terms, but the base (two)
is independent of m so we expect each bucket to be 75% full. The total is
4nm/3 + (3/2)(nm + nm/2) = (43/12)nm terms.

We can make a similar estimate for exact division when the dividend has nm
terms, however the complexity is O(nm log(nm)) because of how leading terms
are computed. The dividend is placed into the largest bucket, which we expect to
be 75% full, so the storage for buckets is 2(4nm/3) = 8nm/3. Nothing is merged
with the largest bucket since

∑#q
i=1 qig fits entirely in the smaller buckets, so the

largest merge that we expect to do is to construct
∑#q/2

i=1 qig which has nm/2
terms. This requires arrays with nm/2 and nm/4 terms, plus the extra 50% that
we allocate, bringing the total number of terms to 8nm/3 + (3/2)(3nm/4) =
(91/24)nm.

The actual amount of memory that geobuckets need for exact division tends
to vary. It can be lower if the leading term computations frequently cancel terms
in the buckets, reducing the size of the polynomials that are merged. For random
sparse divisions we found that approximately 3.6nm terms were used – about
the same as for multiplication. The dynamic arrays were often the same size,
about 3nm/5 terms each.

3 Heap Algorithms for Polynomial Arithmetic

The heap algorithms are based on the following idea: rather than merge polyno-
mials one by one into an intermediate object, we do a simultaneous n-ary merge
using a heap. Consider the multiplication fg where we merge fig for 1 ≤ i ≤ #f .
If we maintain a heap of #f pointers into g, sorted by the monomial of figj , we
can repeatedly extract the largest figj from the heap, merge it onto the end of
the result, and insert its successor figj+1 into the heap if j < #g. We illustrate
this process in Figure 6 below.

The monomial of figj is computed and stored in the heap when the term is
inserted. It is used to determine the maximum element of the heap. This storage
is reused for figj+1 so only O(#f) storage is required, in addition to storage for
the result.

To divide f by g we merge the dividend f with −qig for each term qi of the
quotient. The heap maintains a pointer into f and we add a pointer into −qig
when qi is constructed. The algorithm extracts the largest term from the heap
and continues to extract terms with an equal monomial, adding their coefficients
to produce the next term of f−

∑i
j=1 qjg. If this term is not zero we divide it by

Fig. 6. Multiplication of f = 2x4 + 3x3 + 4x and g = x5 + 5x3 + 7 using a heap. The
products f1g1 and f2g1 have been extracted and replaced by f1g2 and f2g2. We are now
extracting f1g2 = 10x7 and writing it to the result. Its successor f1g3 = 14x4 will be
inserted into the heap, and we will extract f2g2 and f3g1 to obtain 15x6 + 4x6 = 19x6,
the fourth term of the result.

f

5 3x5x

3 3x x44x2

732x x x1089

7 1

2

2

3

2

1

g

g

g

f

f

f

6

6

7

x

x

x

result

heap

g

LT (g) to obtain either a new term of the quotient qi+1, or the next term of the
remainder. When a quotient term is found we insert the second term of −qi+1g
into the heap, increasing the size of the heap by one, along with the successors
of the other terms that were extracted. There is no intermediate blowup in the
number of terms that are stored – the maximum number of terms in the heap
is #q + 1. We call this a “quotient heap” division.

The heap algorithms above were analyzed by Johnson (8) and used in Altran,
one of the first computer algebra systems. For a binary heap of size n, inserting
and extracting each term does O(log n) monomial comparisons. A multiplication
that passes nm terms through a heap of size n does O(nm log n) comparisons –
the same as divide-and-conquer. Exact division f ÷ g with #f = nm, #g = m,
and the quotient #q = n, passes 2nm − n terms through a heap of size n + 1,
which is also O(nm log n) comparisons.

One problem with the heap algorithms is that they do O(nm log n) compar-
isons even when the polynomials are dense, whereas the simple merge and the
divide-and-conquer algorithms do only O(nm) comparisons. In Section 3.2 we
show how to modify the heap to make the heap algorithms efficient in the dense
case as well.

Our main contribution is to modify the heap division algorithm to increment
along the quotient(s) instead of the divisor(s). The resulting “divisor heap” algo-
rithm does O(nm log m) comparisons and uses O(m) storage, where m is the size
of the divisor(s). Our incentive comes from the gcd problem, where we compute
G = gcd(A,B) and divide A/G and B/G to recover the cofactors. The divisor
G is typically small and the quotients (cofactors) are often big. The algorithm
is also useful for computing over small towers of algebraic extensions, where the
number of reductions usually exceeds the size of the extensions.

The modification is easy to do. The algorithm merges f with −giq for 2 ≤
i ≤ #g using a heap of size #g, however we may merge giqj−1 before qj is
computed, in which case we can not insert the next term giqj into the heap
because we can not compute its monomial. However, since LT (g)qj > giqj for

all i > 1, we can safely wait for qj to be computed to insert the terms giqj with
i > 1 into the heap. We exploit the fact that the term giqj is greater than the
term gi+kqj for k > 0, so if #q = j − 1 we encounter the strictly descending
sequence g2qj > g3qj > g4qj > ... in order. For each divisor g we store an index
s of the largest gsqj that is missing from the heap because qj is unknown. When
a new term of the quotient is computed (#q = j) we compute all of the missing
terms {g2qj , . . . gsqj} and insert them into the heap. Here we give the algorithm
for one divisor.

Divisor Heap Division.
Input: f, g ∈ F [x1, ..., xn], F a field, g 6= 0.
Output: q, r ∈ F [x1, ...xn] with f = qg + r.

1: If f = 0 then output (0, f).
2: Initialize (q, r, s) := (0, 0,#g).
3: Create an empty heap H of size #g and insert (−1)f1 into H.
4: While the heap H is not empty do

6: Set t := 0.
7: Repeat

8: Extract x := Hmax from the heap and set t := t− x.
9: Case x = (−1)fi and i < #f : Insert (−1)fi+1 into H.
10: Case x = giqj and j < #q : Insert giqj+1 into H.
11: Case x = giqj and j = #q : Set s := s + 1 (s = i).

12: Until H is empty or LM(t) 6= LM(Hmax).
13: If t 6= 0 and LT (g)|t then

14: Copy t/LT (g) onto the end of q.
15: For i = 2, 3, ..., s compute gi × (t/LT (g)) and insert it into H.
16: Set s := 1.

17: Else if t 6= 0 copy t onto the end of r.
18: Output (q, r).

Theorem 1. The divisor heap algorithm divides f by g producing the quotient q
and remainder r using O((#f +#q#g)log#g) monomial comparisons and using
storage for O(#g + #q + #r) terms.

Proof. We show that at Step 4, |H| + s − 1 = #g if some (−1)fi ∈ H or
|H| + s = #g otherwise. The first time Step 4 is executed, |H| = 1, s = #g,
and (−1)f1 is in the heap, so the loop invariant holds. Steps 7-11 extract a term
from H and either replace it or increment s, unless it was the last term of f .
Step 15 inserts s− 1 terms into H and sets s := 1, maintaining the invariant.

Then |H| ≤ #g since s ≥ 1. Therefore the storage required is at most #g
terms in the heap plus the terms of q and r. It should be clear that the algorithm
adds terms of f , subtracts terms of each giq, and uses LT (g) to cancel terms
if possible, otherwise moving them to r, so that f = qg + r. Since we pass
#f+#q(#g−1) terms through a heap of size |H| ≤ #g, the number of monomial
comparisons is O((#f + #q#g) log #g).

3.1 Heap Optimizations

We present two optimizations that are necessary to reproduce our results. The
first is to implement the heap carefully. Many people are only aware of a bad
algorithm for extracting the largest element from a heap, so we present a classical
algorithm that is roughly twice as fast on average. As LaMarca and Ladner (9)
observe, about 90% of the time is spent extracting elements from the heap so
the resulting speedup is almost a factor of two.

We store the heap in a global dynamic array H, with the convention that
H[0] is the largest element and the children of H[i] are H[2i + 1] and H[2i + 2].

inline heap_elem heap_extract_max(heap_elem *H, int *n)

{ int i, j, s = --(*n);

heap_elem x = H[0];

/* H[0] now empty - promote largest child */

for (i=0, j=1; j < s; i=j, j=2*j+1) {

j = (H[j] > H[j+1]) ? j : j+1;

H[i] = H[j];

}

/* H[i] now empty - insert last element into H[i] */

for (j=(i-1)/2; i>0 && H[s]>H[j]; H[i]=H[j], i=j, j=(j-1)/2);

H[i] = H[s];

return x;

}

The extraction algorithm promotes the largest child into the empty space at a
cost of one comparison per level of the heap H. Then it inserts the last element of
the heap into the empty slot on the lowest level. However, since the last element
was already a leaf, we do not expect it to travel very far up the heap. The number
of comparisons required is log2(n) + O(1) on average.

Compare this with the more commonly known algorithm for shrinking a heap,
which moves the last element to the top and, at a cost of two comparisons per
level (to find the maximum child and compare with it), sifts it down the heap.
Since the last element was already a leaf it is likely to go all the way back down
to the bottom, requiring 2 log2(n) comparisons on average.

Our second optimization improves performance when multiple terms are ex-
tracted from the heap. It is also necessary to obtain O(nm) comparisons in the
totally dense case. We insert and extract batches of terms instead of extracting a
term and immediately inserting its successor. This requires a queue to store the
extracted terms, however we can partition the heap to store this queue in place,
as in heapsort. At the end of each iteration, we insert the successors of all of
the extracted terms at once. As LaMarca notes (9), this strategy also produces
favorable caching effects.

3.2 Chaining terms with equal monomials

Our next improvement chains heap elements with equal monomials to reduce the
number of comparisons. Johnson (8) also experimented with this idea, however

our scheme is simpler and we will show that multiplication and division of dense
polynomials does O(nm) comparisons.

We chain elements only as they are inserted into the heap, using an additional
pointer in the structure that points to fi and gj . In our implementation the
pointers to fi and gj are not stored in the heap, but in a secondary structure
that is accessed only when terms are inserted or extracted. Heap elements store
a pointer to this structure and a pointer to the monomial product used for
comparisons. The overhead of chaining elements in this way is negligible. The
algorithms must be modified to check for chains and to extract all the elements
of a chain without doing any monomial comparisons.

One final optimization is needed for multiplication. When multiplying fg,
we must start with f1g1 in the heap and insert each fig1 only after fi−1g1 has
been extracted from the heap. This leads to the following results.

Lemma 1. Let f and g be dense univariate polynomials with n and m terms,
respectively. A heap multiplication fg with chaining does nm− n−m + 1 com-
parisons.

Proof. We prove a loop invariant: at the beginning of each iteration the heap
contains exactly one element or chain. This is true initially since the only element
is f1g1. Each iteration removes the chain without doing a comparison, producing
an empty heap. When we insert the successor terms into the heap all of the
monomials are equal because the problem is dense, so all of the terms are chained
together at the top of the heap. There are nm terms and n + m − 1 unique
monomials. The first term with each monomial is inserted for free while the
rest use one comparison each to chain. The total number of comparisons is thus
nm− n−m + 1.

Lemma 2. Let q and g be dense univariate polynomials with n and m terms
and let f = qg. Then a quotient heap division f ÷ g with chaining does nm− n
comparisons.

Proof. We use the same loop invariant: the heap contains exactly one element or
chain, which is initially f1. Each iteration extracts the terms of this chain, adding
their coefficients without a comparison, producing an empty heap. If the term
is not zero, a new term of the quotient qi is computed and the monomial of qig1

equal to the monomial of the extracted terms. When we insert its successor qig2

and the successors of all the other terms their monomials are all equal because
the problem is dense, and all of the terms are chained together at the top of
the heap. If each of the n + m − 1 monomials of f is inserted first without any
comparisons, the remaining n(m − 1) terms of −q(g − LT (g)) will be chained
using one comparison each.

Remark: The divisor heap algorithm can also be modified to do nm comparisons
in the dense univariate case. Each term qj of the quotient should insert only
g2qj if it is not in the heap, and each gi+1qj should be inserted only after giqj is
extracted from the heap. We have not yet implemented this modification.

4 Benchmarks

4.1 The number of monomial comparisons

Our first benchmark (see Table 1 and Table 2) is due to Johnson (8). We multiply
and divide sparse univariate polynomials and report the number of comparisons
divided by the total number of terms that are merged. Recall that for a sparse
multiplication fg this is (#f)(#g) and for a sparse division f = qg this is
#f + #q(#g − 1). A “structure parameter” S is used to randomly generate
polynomials f = a0 + a1x

e1 + a2x
e2 + · · · + akxek with the difference between

the exponents satisfying 1 ≤ ei+1 − ei ≤ S.
For each problem we generate f and g with n and m terms respectively,

multiply p = fg and divide p/g. For multiplication we test both chained and
unchained heaps, and for division we test the “quotient heap” and the “divisor
heap” algorithms.

Table 1. Multiplication fg and the number of comparisons divided by (#f)(#g).

S #(fg) #f, #g unchained heap chained heap geobuckets direct merge

1 199 100 6.138 .980 1.114 1.475
1999 1000 9.329 .998 1.027 1.497

10 1025 100 8.339 5.970 2.905 7.239
10747 1000 11.717 8.478 3.065 8.025

100 5728 100 8.671 8.282 4.690 32.893
97051 1000 11.879 11.334 5.798 69.191

1000 9364 100 8.805 8.748 5.274 48.073
566984 1000 11.925 11.852 7.511 324.135

Table 2. Division fg÷g and the number of comparisons divided by #(fg)+#f(#g−1).

S #(fg) #f #g quotient heap divisor heap geobuckets direct merge

1 199 100 100 .980 2.627 .980 .980
1099 100 1000 .989 7.622 .989 .989
1099 1000 100 .989 1.155 .989 .999
1999 1000 1000 .998 4.170 .998 .998

10 1025 100 100 5.692 6.480 2.647 4.300
5856 100 1000 6.493 8.244 2.738 4.872
5949 1000 100 6.503 7.825 2.748 4.934

11162 1000 1000 8.646 9.124 2.916 5.473

100 5725 100 100 7.106 7.580 3.945 14.502
44725 100 1000 7.884 10.594 3.954 19.381
45358 1000 100 7.696 7.938 4.405 18.231
96443 1000 1000 10.898 11.438 5.471 42.262

1000 9403 100 100 7.116 7.522 3.992 17.307
90884 100 1000 7.682 10.608 4.253 23.978
91141 1000 100 7.658 7.747 4.596 22.736

571388 1000 1000 10.563 11.056 6.574 142.095

We make a couple of remarks concerning tables 1 and 2. First it should be
clear that our implementation of the divisor heap algorithm is not fully opti-
mized. As discussed at the end of Section 3 we should delay inserting products
giqj into the heap until after the previous product gi−1qj is extracted from the
heap. This is needed to obtain O(nm) comparisons in the dense case (S = 1).

Second, it is interesting to see that geobuckets do roughly half the number of
comparisons as the heap algorithms in the sparse case, and this ratio improves
as the problems become more dense. We tried some improvements to the heap
algorithms such as chaining elements while shrinking the heap, however these
changes tended to decrease the real world performance of the algorithms.

4.2 7 variable cofactor problem

Our next benchmark (see Table 3) simulates a GCD problem. A large sparse
polynomial is divided by one of its factors (the GCD) to compute the cofactor.
To generate this example we constructed four polynomials {f1, f2, f3, f4} and
divided their product p = f1f2f3f4 by f1, f1f2, and f1f2f3 over Z32003 using
graded lexicographic order. The polynomials have #fi = 50 and deg(fi) = 10.

The computations were performed on an AMD Opteron 254 2.8 GHz with
8GB of 400MHz RAM and 1 MB of L2 cache running 64-bit Red Hat Enterprise
Linux 5 with a 2.6.18 kernel.

Table 3. Sparse multiplications and divisions in 7 variables over Z32003 using graded lex
order with {1, 2, 4, 8} exponents packed into each 64-bit word. #fi = 50, deg(fi) = 10,
#(f1f2) = 2492, #(f3f4) = 2491, #(f1f2f3) = 121903, #(f1f2f3f4) = 4523085.

(f1f2) × (f3f4)

expon/wd size of result chained heap geobuckets direct merge

1 310.57 MB 2.630 s (0.38 MB) 7.720 s (994 MB) 332.230 s (371 MB)
2 172.54 MB 1.860 s (0.31 MB) 4.230 s (552 MB) 185.780 s (206 MB)
4 103.52 MB 1.450 s (0.27 MB) 2.550 s (331 MB) 111.960 s (124 MB)
8 69.01 MB 1.240 s (0.25 MB) 1.760 s (221 MB) 75.560 s (83 MB)

f1 × (f2f3f4)

expon/wd size of result chained heap geobuckets direct merge

1 310.57 MB 1.700 s (0.07 MB) 4.770 s (1143 MB) 8.070 s (483 MB)
2 172.54 MB 1.240 s (0.06 MB) 2.660 s (635 MB) 4.500 s (216 MB)
4 103.52 MB 0.980 s (0.06 MB) 1.690 s (381 MB) 2.800 s (161 MB)
8 69.01 MB 0.880 s (0.06 MB) 1.230 s (254 MB) 1.910 s (107 MB)

(f1f2f3f4)/(f1f2f3)

x quotient heap divisor heap geobuckets direct merge

1 2.000 s (0.13 MB) 8.820 s (18.6 MB) 5.190 s (1793 MB) 7.530 s (944 MB)
2 1.450 s (0.13 MB) 6.570 s (14.9 MB) 2.960 s (996 MB) 4.250 s (524 MB)
4 1.250 s (0.10 MB) 5.270 s (13.0 MB) 1.950 s (598 MB) 2.610 s (315 MB)
8 1.060 s (0.10 MB) 4.530 s (12.1 MB) 1.500 s (398 MB) 1.770 s (210 MB)

(f1f2f3f4)/(f1f2)

x quotient heap divisor heap geobuckets direct merge

1 3.270 s (0.72 MB) 3.380 s (0.30 MB) 8.020 s (1461 MB) 330.730 s (932 MB)
2 2.290 s (0.65 MB) 2.430 s (0.31 MB) 4.460 s (812 MB) 183.060 s (518 MB)
4 1.840 s (0.62 MB) 1.930 s (0.27 MB) 2.760 s (487 MB) 110.290 s (311 MB)
8 1.520 s (0.60 MB) 1.620 s (0.25 MB) 2.040 s (321 MB) 74.540 s (207 MB)

(f1f2f3f4)/f1

x quotient heap divisor heap geobuckets direct merge

1 8.010 s (28.46 MB) 1.990 s (0.07 MB) 8.320 s (1371 MB) –
2 5.900 s (25.69 MB) 1.480 s (0.06 MB) 4.640 s (762 MB) –
4 4.750 s (24.29 MB) 1.240 s (0.06 MB) 2.890 s (457 MB) –
8 3.970 s (23.60 MB) 1.080 s (0.06 MB) 2.210 s (305 MB) 3526.750 s (207 MB)

We report times and memory for {1, 2, 4, 8} exponents per 64-bit word. For
multiplications we subtracted the size of the product from the memory totals
for the geobucket and merge algorithms, and for divisions we did not include
memory for the quotient. For heap algorithms we report the size of the heap and
products. Thus we report the memory overhead of the algorithms, not the total
memory used. For divisions the largest quotient (f2f3f4) is at most 8.3 MB.

The heap algorithms performed very well on this example despite their higher
cost in monomial comparisons. We attribute this to the fact that their working
memory (the heap of pointers and the monomial products) fits in the L2 cache,
whereas geobuckets and direct merging work mostly in RAM, which is 7 times
slower than the processor.

Also note the effect of packing exponents. The performance of merging and
geobuckets is practically linear in the size of the terms, which is 9, 5, 3, or 2
words with the coefficient. The heap algorithms do not benefit as much, but the
improvement is worthwhile. Going from 64-bit (1 exponent per word) to 16-bit
(4 exponents per word) exponents places only modest restrictions on the total
degree and improves performance by 40%.

4.3 The effect of faster RAM and a larger L2 cache

In the previous benchmark the performance of geobuckets was constrained by
the speed of the RAM and the size of the L2 cache. We thought that geobuckets
should outperform the heap algorithms under different conditions, because they
typically do fewer monomial comparisons.

Table 4. Sparse multiplications and divisions in 4 variables over Z32003. Lexicographic
order was used with 32-bit words. Each fi has degree 30 in each variable. #f1 = 96,
#f2 = 93, #f3 = 93, #(f1f2) = 8922, #(f2f3) = 8639, #(f1f2f3) = 795357.

f1 × (f2f3)

expon/word size of result chained heap geobuckets direct merge

1 15.17 MB 0.200 s (0.03 MB) 0.210 s (55.74 MB) 0.650 s (23.21 MB)
2 9.10 MB 0.150 s (0.03 MB) 0.140 s (33.44 MB) 0.470 s (13.92 MB)
4 6.07 MB 0.120 s (0.03 MB) 0.110 s (22.30 MB) 0.360 s (9.28 MB)

(f1f2f3)/(f1f2)

x/w quotient heap divisor heap geobuckets direct merge

1 0.260 s (0.06 MB) 0.460 s (0.55 MB) 0.280 s (70.91 MB) 0.600 s (38.38 MB)
2 0.210 s (0.05 MB) 0.370 s (0.48 MB) 0.220 s (37.38 MB) 0.440 s (27.46 MB)
4 0.170 s (0.05 MB) 0.300 s (0.45 MB) 0.180 s (22.36 MB) 0.350 s (18.30 MB)

(f1f2f3)/f1

x/w quotient heap divisor heap geobuckets direct merge

1 0.430 s (0.53 MB) 0.280 s (0.03 MB) 0.390 s (55.90 MB) 44.000 s (45.52 MB)
2 0.350 s (0.47 MB) 0.230 s (0.03 MB) 0.300 s (33.54 MB) 28.790 s (27.30 MB)
4 0.280 s (0.43 MB) 0.190 s (0.03 MB) 0.260 s (22.36 MB) 22.150 s (18.20 MB)

Our third benchmark (see Table 4) is a smaller problem similar to the pre-
vious one. We created three random polynomials {f1, f2, f3} and divided their
product by f1 and f2f3. This test was run on a 2.4 GHz Intel E6600 Core 2
Duo with 2 GB of 666 MHz RAM, 4 MB of L2 cache, and 32-bit words running

Fedora Core 6. Thus RAM is now only 3.6 times slower than the CPU and the
number of words in the L2 cache has increased by a factor of eight.

Table 4 shows that geobuckets are competitive with heap algorithms if they
work in the L2 cache. The times include memory allocation, so in practice if the
geobucket is reused it may be faster than a quotient heap on sparse problems,
with an additional advantage on dense problems (see tables 1 and 2). However
when the quotient is large, the divisor heap’s lower complexity easily wins.

4.4 Algebraic extensions

Our final benchmark (see Table 5) is a large division with algebraic extensions.
We constructed four random polynomials {f1, f2, f3, f4} in Z32003[x, y, z, α, β, s, t]
with deg(fi) = 10 and LT (fi) = x10. We used lexicographic order with x > y >
z > α > β > s > t with the extensions α2 − 3 = 0 and β2 + st − 1 = 0. Thus
we are effectively computing with polynomials in {x, y, z} with coefficients in
Z32003[α, β, s, t]/〈α2 − 3, β2 + st− 1〉.

We report the times to multiply (f1f2)× (f3f4) and f4× (f1f2f3) and reduce
the product mod {α2 − 3, β2 + st − 1}. Next we divide the reduced product by
f1, (f1f2), and (f1f2f3) mod {α2 − 3, β2 + st − 1} and reduce the quotients
mod {α2 − 3, β2 + st − 1}. The divisors in each case are already reduced mod
{α2 − 3, β2 + st− 1}.

We performed the test on a 3 GHz Intel Xeon 5160 with 16 GB of 666
MHz RAM and 4 MB of L2 cache running 64-bit Red Hat Enterprise Linux
5. Memory numbers are reported differently since the heap algorithms must
store the quotients of {α2 − 3, β2 + st− 1} which are large, whereas geobuckets
discards them. We report the total memory allocated by each routine, including
reallocations to enlarge the geobucket and speculative allocations of quotients
by the heap algorithms. We pack all seven exponents into one 64-bit word. The
results with less packing are consistent with our previous benchmarks.

Table 5. Sparse multiplications and divisions with algebraic extensions. Lexicographic
order was used with 7 exponents per 64-bit word. We include the times, the number
of monomial comparisons (upper right), and the total memory allocated. #f1 = 106,
#f2 = 96, #f3 = 105, #f4 = 98, #(f1f2) = 8934, #(f3f4) = 8982, #(f1f2f3) =
256685, #(f1f2f3f4) = 1663235.

quotient heap divisor heap geobuckets

p = (f1f2)(f3f4) 11.080 s 9.713 × 108 11.100 s 9.267 × 108 8.510 s 4.218 × 108

reduce product 0.700 s 458.75 MB 0.300 s 166.73 MB 0.610 s 646.54 MB

p = f4(f1f2f3) 1.690 s 1.966 × 108 1.680 s 1.546 × 108 2.130 s 8.184 × 107

reduce product 0.670 s 446.07 MB 0.300 s 163.12 MB 0.560 s 642.30 MB

p/(f1f2f3) 3.060 s 2.862 × 108 11.910 s 6.949 × 108 3.360 s 1.218 × 108

reduce quotient 0.000 s 208.02 MB 0.000 s 64.34 MB 0.000 s 479.98 MB

p/(f1f2) 51.430 s 4.097 × 109 35.040 s 2.860 × 109 35.520 s 1.732 × 109

reduce quotient 0.010 s 733.72 MB 0.010 s 81.45 MB 0.010 s 1205.19 MB

p/f1 49.790 s 2.005 × 109 5.980 s 4.616 × 108 13.140 s 9.100 × 108

reduce quotient 0.190 s 752.61 MB 0.080 s 113.25 MB 0.180 s 1038.96 MB

The divisor heap algorithm performs well on this example (and the quotient
heap algorithm poorly) because {α2−3, β2 +st−1} are small divisors with large
quotients, i.e., they are frequently used to reduce terms during the division. The
time and space requirements of the divisor heap algorithm scale linearly with
the total number of reduction steps, so we expect it to be especially useful for
divisions in the presence of algebraic extensions.

Geobuckets also perform well on this benchmark. Their overall memory usage
is low because they do not need to store all of the quotients and the number
of monomial comparisons they do is very competitive. However, performance is
not dictated entirely by monomial comparisons. Consider the fourth benchmark
p/(f1f2), where geobuckets do half the number of monomial comparisons as a
divisor heap only to finish in the same amount of time.

The performance of geobuckets suffers because they access a large amount
of memory randomly, and this decreases the effectiveness of the cache. Imagine
what happens when β2 + st − 1 is used to reduce one million terms in a row.
Geobuckets will merge multiples of this polynomial into the smallest bucket 106

times, interspersed with 500,000 merges into the second bucket, 250,000 merges
into the third, and so on. When a large bucket is merged the smaller buckets are
evicted from the cache, producing cache misses the next time those buckets are
accessed. If the problem is sufficiently large or the L2 cache is small, this will
happen frequently.

By contrast, the divisor heap algorithm will do two simultaneous passes over
the quotient of β2 + st−1 while randomly accessing a heap with three elements,
two monomial products, and the terms of the divisor. This is a tiny amount of
memory, so almost all of the cache is used to load terms from the quotient, and
very few cache misses will occur.

5 Conclusions and Future Work

We have shown how a heap of pointers can be very efficient for sparse polynomial
division and multiplication. This performance is primarily due to the very low
memory requirements of the algorithms and their cache-friendly design. We have
also presented a new division algorithm that scales linearly with the size of the
quotient(s) by using a heap the size of the divisor(s). This algorithm should have
many applications for polynomial computations with algebraic extensions.

In the future we plan to combine the quotient and divisor heap algorithms to
produce a division algorithm which is O(nm log(min(n, m))), which we believe
is optimal. We also plan to implement versions of the heap algorithms that use
GMP for large integer arithmetic, and we are experimentally trying to parallelize
the heap algorithms as well.

Bibliography

[1] Olaf Bachmann and Hans Schönemann. Monomial representations for
Gröbner bases computations. Proceedings of ISSAC 1998, ACM Press
(1998) 309–316.

[2] W. S. Brown. Altran Users Manual. 4th edition. Bell Labs, Murray Hill,
N.J., 1977.

[3] David Cox, John Little, Donal O’Shea. Ideals, Varieties and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative
Algebra. Springer Verlag, 1992.

[4] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer
Algebra, Kluwer Academic, 1992.

[5] D. R. Grayson and M. E. Stillman. Macaulay 2, a soft-
ware system for research in algebraic geometry. Available at
http://www.math.uiuc.edu/Macaulay2/

[6] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A
Computer Algebra System for Polynomial Computations. Cen-
tre for Computer Algebra, University of Kaiserslautern (2005).
http://www.singular.uni-kl.de.

[7] Richard Jenks, Robert Sutor and Scott Morrison. AXIOM: The Scientific
Computation System Springer-Verlag, 1992.

[8] Stephen C. Johnson. Sparse polynomial arithmetic. ACM SIGSAM Bulletin,
Volume 8, Issue 3 (1974) 63–71.

[9] Anthony LaMarca, Richard Ladner. The Influence of Caches on the Perfor-
mance of Heaps. J. Experimental Algorithms 1, Article 4, 1996.

[10] M. Monagan, K. Geddes, K. Heal, G. Labahn, S. Vorkoetter, J. McCarron,
and P. DeMarco. Maple 10 Introductory Programming Guide Maplesoft,
ISBN 1-894511-76, 2005.

[11] David Stoutemyer. Which Polynomial Representation is Best? Proceedings
of the 1984 Macsyma Users Conference Schenectedy, N.Y., (1984) 221–244.

[12] Thomas Yan. The Geobucket Data Structure for Polynomials. J. Symb.
Comput. 25 (1998) 285–293.

