The Multivariate GCD Problem

Fix a prime p and some $n \in \mathbb{N}$ and choose any multivariate polynomials $A, B \in$ $\mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. Then the multivariate GCD problem is to efficiently compute $G=$ $\operatorname{gcd}(A, B)(\bmod p)$. It turns out that the fastest known algorithms for solving this problem each use the same general strategy: compute several univariate images of G in $\mathbb{Z}_{p}\left[x_{0}\right]$, then recover G via sparse interpolation.

Sparse Polynomials

In practice, multivariate polynomials are usually sparse. More precisely, let $d=$ $\operatorname{deg} G$ be the total degree of G and let $T=\# G$ be the number of nonzero terms in G. Then we say that G is sparse iff $T \ll\binom{n+d+1}{d}$, the maximum number of terms. For example, the following polynomial contains only $T=5$ terms (which is much less than $\binom{6+10+1}{10}=19448$) and thus is considered very sparse:

$$
G=x_{0}^{10}+7 x_{0}^{3} x_{1} x_{6}^{2}+6 x_{0}^{3} x_{5}+8 x_{1} x_{2} x_{3}^{7}+1
$$

Previous Multivariate GCD Algorithms
Let $G=\sum_{i} g_{i}\left(x_{1}, \ldots, x_{n}\right) x_{0}^{i}$ and let $t_{i}=\# g_{i}$ be the number of terms in g_{i} and let $t=\max _{i} t_{i}$. Generally, we want to minimize the number of images required for interpolation since evaluations typically represent the bottleneck step. Below is a table of previous multivariate GCD algorithms

Year	Author(s)	Randomness	\# of Images
1971	Brown [3]	Deterministic	$O\left(d^{n}\right)$
1979	Zippel [6]	Probabilistic	$O(n d t)$
1988	Ben-Or/Tiwari [2]	Probabilistic	$O(t)$

We present a modified version of Ben-Or/Tiwari's algorithm [2] that also requires only $O(t)$ images. Unlike Ben-Or/Tiwari's algorithm however (which requires that we choose p to be bigger than p_{n}^{d}, where p_{n} is the $n^{\text {th }}$ smallest prime), our approach only requires that $p>d^{n}$.

Overview of our Multivariate GCD Algorithm

The Kronecker Substitution

Given any $F\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{p}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, fix some $m>\operatorname{deg} F$. Then we define the Kronecker substitution of F to be:

$$
\widehat{F}=F\left(x, y, y^{m}, y^{m^{2}}, \ldots, y^{m^{n-1}}\right)
$$

Notice that the Kronecker substitution allows us to map a GCD computation modulo p in $n+1$ variables into just 2 variables. Furthermore, observe that we can recover F from \widehat{F} (since $m>\operatorname{deg} F$). Unfortunately, there are certain values of m that represent "unlucky" Kronecker substitutions. For example, consider:

$$
A=x_{0}^{2}-x_{1}^{2} x_{2} \quad B=x_{0}^{3}+x_{1} x_{2}^{2} \quad m=4
$$

Notice that $\widehat{G}=\operatorname{gcd}(\widehat{A}, \widehat{B})=\operatorname{gcd}\left(x^{2}-y^{6}, x^{3}+y^{9}\right)=x+y^{3}$ while the true GCD is $G=\operatorname{gcd}(A, B)=1$. In this case, it is impossible to recover G from \widehat{G}. Fortunately, we can prove that there are only finitely many $m>d$ for which the Kronecker substitution fails in this way.

The Evaluation Points
Let

$$
\widehat{F}=\underbrace{\sum_{i=0}^{\operatorname{deg}_{x} \widehat{F}} f_{i}(y) x^{i}}_{\text {dense format }}=\underbrace{\sum_{i=1}^{s} u_{i} x^{v_{i}} M_{i}(y)}_{\text {sparse format }}
$$

where $s=\# \widehat{F}$ is the number of terms in \widehat{F} and $M_{i}(y)=y^{w_{i}}$ are called the monomials. We want to evaluate \widehat{F} at $y=\alpha^{j}$ for each $j \in\{1, \ldots, 2 t\}$.
At first, we did this by evaluating the monomials one at a time using simple binary powering. Since $\operatorname{deg}_{y} \widehat{F}<(d+1)^{n}$, this required a total of $O(\operatorname{stn} \log d)$ multiplications in \mathbb{Z}_{p}. However, since evaluation turned out to be the bottleneck of the entire GCD algorithm, we decided to use a different technique.
Notice that $M_{i}\left(\alpha^{j}\right)=\left(\alpha^{j}\right)^{w_{i}}=\left(\alpha^{w_{i}}\right)^{j}=\left(M_{i}(\alpha)\right)^{j}$. Hence, if we compute $\Gamma=$ $\left[M_{1}(\alpha), \ldots, M_{s}(\alpha)\right] \in \mathbb{Z}_{p}^{s}$ in $O(s \log d)$ multiplications, then we can compute the next $\widehat{F}\left(x, \alpha^{j+1}\right)$ from $\widehat{F}\left(x, \alpha^{j}\right)$ using only s multiplications so that this step requires a total of $O(s \log d+s t)$ multiplications in \mathbb{Z}_{p}. Note however that this makes the evaluations serial. To parallelize this for N cores, we use a baby-step giant-step algorithm.

Sparse Interpolation via $\Lambda_{i}(z)$
Given the points $\left(\alpha^{j}, g_{i j}\right)$ for $j \in\{1, \ldots, 2 t\}$, we want to interpolate the sparse polynomial $g_{i}(y)=\sum_{k=1}^{t_{i}} c_{k} M_{k}(y)$ where $t_{i}=\# g_{i}$ and $c_{k} \in \mathbb{Z}_{p}^{*}$ and $M_{k}(y)=y^{d_{k}}$. That is, we seek each c_{k} and d_{k}. To this end, let $m_{k}=M_{k}(\alpha)=\alpha^{d_{k}}$ and consider the linear generator defined by:

$$
\Lambda_{i}(z)=\prod_{k=1}^{t_{i}}\left(z-m_{k}\right)=z^{t_{i}}+\sum_{k=0}^{t_{i}-1} \lambda_{k} z^{k}
$$

We could obtain each λ_{k} from the $\left(\alpha^{j}, g_{i j}\right)$ by solving a linear system in $O\left(t^{3}\right)$ arithmetic operations in \mathbb{Z}_{p}. Instead, we obtain the λ_{k} by using an extended Euclidean version of the Berlekamp-Massey algorithm [1], which only takes $O\left(t^{2}\right)$ operations. We then compute each of the roots m_{k} via Rabin's Las Vegas algorithm [5] in $O\left(t^{2} \log p\right)$ operations.

Discrete Logarithms

For each of the t_{i} roots $m_{k}=\alpha^{d_{k}}$, we want to efficiently compute the discrete logarithm given by $d_{k}=\log _{\alpha} m_{k}$ in \mathbb{Z}_{p}. In general, this is very difficult (many people suspect that it is NP-hard, and the security of the Diffie-Hellman key exchange protocol from cryptography relies on this). However, for Fourier primes of the form $p=2^{r} q+1$ with q sufficiently small, the problem is no longer intractable.

By using the Pohlig-Hellman algorithm [4], we can compute each d_{k} using only $O(\sqrt{q}+r \log r)$ operations in the cyclic group \mathbb{Z}_{p}^{*}. This choice for p also means that we can apply the Fast Fourier Transform inside \mathbb{Z}_{p} to accelerate Rabin's algorithm from $O\left(t^{2} \log p\right)$ to $O(t \log t \log p)$. Note that to ensure that the m_{k} are distinct, we require that $p>\operatorname{deg}_{y} \widehat{G}$. We may use $\operatorname{deg}_{y} \widehat{G} \leq \min \left\{\operatorname{deg}_{y} \widehat{A}, \operatorname{deg}_{y} \widehat{B}\right\}$.

Shifted Transposed Vandermonde Systems
To solve for the unknown coefficients c_{k} we solve the shifted transposed Vandermonde system

By taking advantage of its structure, we can accomplish this by using only $O\left(t^{2}\right)$ arithmetic operations in \mathbb{Z}_{p} and $O(t)$ space (see Zippel [6]).

Parallel Implementation and Benchmarks

We have implemented our algorithm in Cilk C , a parallel extension of C which has been adopted by Intel for the Intel C compiler. We have parallelized the evaluations, and we interpolate the coefficients $g_{i}(y)$ of \widehat{G} in parallel. Since our algorithm requires that $p>d^{n}$, we have implemented our algorithm for 31-bit and 63-bit primes, and we are working on a 127 -bit prime implementation.
To assess our algorithm's performance, we compared it with the implementation of Zippel's algorithm in Maple and a Hensel Lifting algorithm in Magma. The following timings are in CPU seconds:

3 variables	6 variables								
$\# G$	d	1 core 8 cores	Maple Magma			1 core 8 cores	Maple Magma		
1000	10	0.062	0.015	0.076	0.08	1.306	0.232	35.61	3.38
2000	20	0.238	0.048	0.385	0.89	2.585	0.488	166.55	137.76
5000	50	1.231	0.270	5.174	20.00	6.623	1.239	1338.18	8527.85
10000	100	3.628	0.770	72.461	228.84	13.239	2.459	5310.27	-
20000	200	7.094	1.666	693.088	3003.23	26.610	4.915	-	-

References

[1] N. B. Atti, G. M. Diaz-Toca, and H. Lombardi. The Berekekmp-Massey Algorithm revisied. Communication and Computing, AAECC $17(1)$. 75-82, 2006.
[2] M. Ben-Or and P. Tiwari. Adeerminisici algorithm for sparse mulivaraite polynomial inerpolation. Proceedings of the 20th Annual $A C M$
Symposium on Theory of Computing, pp. $301-309,1988$.
ation of Polynomial Greatest Common Divisors. J. ACM 18 (1971), 478-504.

Trans. on Inf. Theory $24(1)$, pp. $106-110,1978$.
[5]. M. . Rabin. Probabilistic Algorithms in Finite Fields. SIAM J. Computing, 9(3), 273-280, 1980

