A fast recursive algorithm for computing cyclotomic polynomials

Andrew Arnold (ada26@sfu.ca), Centre for Experimental and Constructive Mathematics CECM, Simon Fraser University, 2010

A motivating problem about $\Phi_{n}(z)$

Definition 1. The $n_{t h}$ cyclotomic polynomial, $\Phi_{n}(z)$, is the monic polynomial whose $\phi(n)$ roots are the $n_{\text {th }}$ primitive roots of unity.

$$
\Phi_{n}(z)=\prod_{\substack{k=0 \\(k, n)=1}}^{n}\left(z-e^{\frac{2 \pi i}{n} k}\right)=\sum_{k=0}^{\phi(n)} a_{n}(k) z^{k}
$$

Definition 2. The $n_{\text {th }}$ inverse cyclotomic polynomial, $\Psi_{n}(z)$, is the monic polynomial whose roots are the $n_{\text {th }}$ nonprimitive roots of unity. It is the polynomial satisying $\Phi_{n}(z) \Psi_{n}(z)=z^{n}-1$ (see [3]). Definition 3. We let $A(n)$ denote the height of $\Phi_{n}(z)$: the magnitude of its largest coefficient.

$$
A(n)=\max _{0 \leq j \leq \phi(n)}\left|a_{n}(j)\right| .
$$

The first six cyclotomic polynomials are
$\begin{array}{lll}\Phi_{1}(z)=z-1, & \Phi_{2}(z)=z+1, & \Phi_{3}(z)=z^{2}+z+1, \\ \Phi_{4}(z)=z^{2}+1, & \Phi_{5}(z)=z^{4}+z^{3}+z^{2}+z+1, & \Phi_{6}(z)=z^{2}-z+1 .\end{array}$ For $n \leq 6$, we see that $A(n)=1$. The following theorems tell us, howTheorem 4 (Erdos [1]). Let $c>0$. Then there exists n such that $A(n)>$
Theorem 5 (Maier [2]). The set of $n \in \mathbb{N}$ satisfying $A(n)>n^{c}$, for any fixed c, has positive lower density.

The coefficients of cyclotomic polynomials that are easy to compute, however,
are typically very small. For $n<10^{6} \quad A(n)<6 \cdot 10^{4}$ We were originaly re typically very small. For $n<10^{6}, A(n)<6 \cdot 10^{4}$. We were originally $A(n)>n^{c}$? To that end we implemented fast algorithms to compute Φ (z). Here are our results:

c	c n	$A(n)$
	1181895	14102773
	43730115	862550638890874931
3	416690995	80103182105128365570406901971

Lemma 6. Let $p \nmid n$ be prime. Then $\Phi_{n p}(z)=\Phi_{n}\left(z^{p}\right) / \Phi_{n}(z)$. Lemma 7. Let $q \mid n$ be prime. Then $\Phi_{n q}(z)=\Phi_{n}\left(z^{q}\right)$.
Lemma 8. Let n be odd. Then $\Phi_{2 n}(z)=\Phi_{n}(-z)$.
By lemmas 7 and 8 , we know if \bar{n} is the greatest squarefree odd divisor of n then $A(\bar{n})=A(n)$. As such we only consider $\Phi_{n}(z)$ of odd, squarefree index Given $n=p_{1} p_{2} \cdots p_{k}$, a product of k odd primes, lemma 6 outlines a way of such a method using the Fast Fourier transform to perform fast polynomial division (FFT, see timings); however, it was surpassed by the Sparse Power Series (SPS) algorithm.

The palindromic property of $\Phi_{n}(z)$ To obtain $A(n)$, we need only compute the terms of $\Phi_{n}(z)$ up to degree $\phi(n) / 2$
and not $\phi(n)$ The coefficients of $\Phi_{n}(z)$, for $n>1$ are palindromic. That is, for $\Phi_{n}(z)=\sum^{\phi(n)} a_{n}(k) z^{k}$, we have that $a(\phi(n)-k)=a(k)$. Thus it is easy to generate the higher-degree terms of $\Phi_{n}(z)$. Lemma 9 is a more general result which bodes useful in later algorithms.
Lemma 9. Let

$$
f(z)=\prod_{j=1}^{s} \Phi_{n_{j}}(z)=\sum_{i=0}^{D} a(i) z^{i}
$$

be a degree D product of cyclotomic polynomials such that n_{j} is odd for $1 \leq j \leq s$. Then a(i) $=(-1)^{D} a(D-i)$. In other words, the coef-
ficients of $f(z)$ are palindromic if D is even, and antipalindromic otherwise.

The sparse power series (SPS) method The sparse power series (SPS or SPS1) method computes $\Phi_{n}(z)$ as the product

$$
\Phi_{n}(z)=\prod_{d \mid n}\left(1-z^{d}\right)^{\mu(n / d)}
$$

We call the $\left(1-z^{d}\right)^{ \pm 1}$ comprising $\Phi_{n}(z)$ in (1) the subterms of $\Phi_{n}(z)$. To compute the product above efficiently, we compute $\Phi_{n}(z)$ as a truncated power series. The sparse power series earns its name as the power series expansion of nearly all of the subterms appearing in (1) are sparse. As the power series expansion of $\left(1-z^{d}\right)^{-1}$ is $\left(1+z^{d}+z^{2 d}+\cdots\right)$, w can multiply a truncated power series of degree D by $\left(1-z^{d}\right)$ in $\mathcal{O}(D$
arithmetic operations in \mathbb{Z}. Multiplying by $\left(1-z^{d}\right)$ is similarly easy. In addiion, the operations on the coefficients are strictly additions and subtractions Using a dense representation for our truncated power series, these multiplica tions can be naturally done in memory; we write our resulting product ove our previous truncated power series.
Input: n a squarefree, odd integer
Output: $a(0), \ldots, a\left(\frac{\phi(n)}{2}\right)$, the first half of the coefficients of $\Phi_{n}(z)$
/ we compute terms up to degree D
for $d \left\lvert\, n \frac{2}{2}\right.$ such that $d<n$ do
$\quad / /$ multiply by 1
if $\mu\left(\frac{n}{d}\right)=1$ then
for $i=D$ down to d by -1 do $a(i) \overleftarrow{L} a(i)-a(i-d$
else \quad for $i=d$ to D do $a(i) \leftarrow a(i)+a(i-d)$
eturn $a(0), a(1), \ldots a(D)$
Procedure SPS(n), computing $\Phi_{n}(z)$ as a product of sparse power series
The operation cost of the SPS method is $\mathcal{O}\left(2^{k} \phi(n)\right)$.

Making SPS faster

Let $n=p_{1} p_{2} \cdots p_{k}$ be a product of k distinct odd primes. Let $d_{1}, d_{2}, \cdots d_{2}$ them all. The SPS algorithm computes the truncated power series of

$$
f_{s}(z)=\prod_{i=1}^{s}(1
$$

or $0 \leq s \leq 2^{k}$, all truncated to degree $\phi(n) / 2$. If, however, for some $s, f_{s}(2)$ is a polynomial of degree D_{s}, then we need only truncate f_{t}, where $t \leq s$, to degree at most D_{s}. Moreover, if f_{s} is a polynomial, then $f_{s}(z$ is a product of cyclotomic polynomials satisfying lemma 9 , hence we need only truncate
to degree $|D / 2|$. to degree $\lfloor D / 2\rfloor$.

More generally, if $f_{s_{1}}, f_{s_{2}}, \ldots, f_{s_{j}}$ are polynomials of degree $D_{s_{1},}, D_{s_{2}}, \ldots, D_{s_{j},}$, then for $t \leq \min _{1 \leq i \leq j} s_{j}$, we need only truncate $f_{t}(z)$
o degree $|D / 2|$, where $D=\min _{1 \leq i \leq j} D_{j}$. We call the degree to which w truncate f_{t} the degree bound of f_{t}
Aim: Order the divisors $d \mid n$ in a manner which reduces the degree bound over the computation of $\Phi_{n}(z)$

The improved SPS algorithm (SPS2) Let p be the largest prime divisor of $n=m p$. Then $\Phi_{n}(z)=$
$\Psi_{m}(z) \Phi_{m}\left(z^{p}\right)\left(z^{m}-1\right)^{-1}$. We can reexpresses $\Psi_{m}(z)$ and $\Phi_{m}(z)$ as products $\Psi_{m}(z) \Phi_{m}\left(z^{\eta}\right)\left(z^{m}-1\right)-$
of subterms of $\Phi_{n}(z)$

$$
\Phi_{n}(z)=\left(\prod_{d \mid m, d<m}\left(1-z^{d}\right)^{-\mu\left(\frac{m}{d}\right)}\right)\left(\prod_{d \mid m}\left(1-z^{d p}\right)^{\mu\left(\frac{m}{d}\right)}\right)(z
$$

If compute the product of subterms appearing in $\Psi_{m}(z)$ first, we can reduce the degree bound to $\left\lfloor\frac{m-\phi(m)}{2}\right\rfloor$ when multiplying by these subterms. For n product of k distinct odd primes, $\Psi_{m}(z)$ comprises $2^{k-1}-1$ of the 2^{k} subterm
of $\Psi_{m}(z)$. We then apply lemma 9 to compute the higher-degree terms of $\Psi_{m}(z)$. We then truncate to degree $\phi(n) / 2$ for the remaining subterms. This method, which we call the improved SPS method or SPS2, saves us roughly a factor of 2 time over SPS in practice.

The iterative SPS (SPS3)
identity. Let $n=p=1$ identity, Let $n=p_{1} p_{2} \cdots p_{k}$, a product of k distinct odd primes. For
$1 \leq i \leq k$, let $m_{i}=p_{1} p_{2} \cdots p_{i-1}$ and $e_{i} p_{i+1} \cdots p_{k}$. We set $m_{1}=e_{k}=1$, and let $e_{0}=n$. Note that $e_{i} p_{i} m_{i}=c_{i} \leq i \leq k$. By repeated appliation of (2), we can show that

$$
\Phi_{n}(z)=\left(\prod_{j=2}^{k} \Psi_{m_{j}\left(z^{e_{j}}\right)}\right)\left(\prod_{j=1}^{k}\left(z^{n / p_{j}}-1\right)^{-1}\right)\left(z^{n}-1\right)
$$

For example, for $n=105=3 \cdot 5 \cdot 7$,
$\Phi_{105}(z)=\Psi_{15}(z) \Psi_{3}\left(z^{7}\right)\left(z^{15}-1\right)^{-1}\left(z^{21}-1\right)^{-1}\left(z^{35}-1\right)^{-1}\left(z^{105}-1\right)$ In the iterative SPS method (SPS3), we first compute the product $\Psi_{m_{k}} z^{z_{k}} \cdots \Psi_{m_{2}}\left(z^{2_{2}}\right)$ from left to right, raising the degree bound everytime
we move onto the next $\Psi_{m}\left(z_{j} e_{j}\right.$ and leveraging lemma 9 to generate higher degree terms of our intermediate polynomial as necessary. For the remaining $k+1$ subterms we still truncate to degree $\phi(n) / 2$ as before.

The gains SPS3 has over SPS2 are more substantial when computing $\Phi_{n}(z)$ for n with many distinct prime factors. Timings suggest, for n with 6 or more factors, computing $\Phi_{n}(z)$ using SPS3 is between 2 and 5 times faste

The recursive SPS algorithm (SPS4)

$$
\begin{aligned}
& \text { We establish an analagous identity to (3) for } \Psi \\
& \qquad \Psi_{n}(z)=\prod^{k} \Phi_{m_{3}}\left(z^{\prime}\right.
\end{aligned}
$$

$$
\begin{equation*}
\Psi_{n}(z)=\prod_{j=1} \Phi_{m_{j}}\left(z^{e_{j}}\right) . \tag{4}
\end{equation*}
$$

(3) and (4) suggest a recursive method of computing $\Phi_{n}(z)$. Consider the example of $\Phi_{n}(z)$, for $n=1155=3 \cdot 5 \cdot 7 \cdot 11$. To obtain the coefficients of $\Phi_{1105}(z)$ by way of SPS3, we construct the product

$$
\Psi_{105}(z) \cdot \Psi_{15}\left(z^{11}\right) \Psi_{3}\left(z^{(77)} \cdot\left(1-z^{385}\right)^{-1}\right.
$$

 $\Psi_{105}(z)$ in a wasteflum maner. We can treat $\Psi_{105}(z)$ as a product of One could and (3) yet $\log ^{105}(z)=\Phi_{15}(z) \Phi_{5}\left(z^{7}\right) \Phi_{1}\left(z^{50}\right)$

$$
\begin{aligned}
& \text { pply (3) yet again, now to } \Phi_{15}(z) \text {, giving us } \\
& \Phi_{15}(z)=\Psi_{5}(z) \cdot\left(1-z^{5}\right)^{-1} \cdot\left(1-z^{3}\right)^{-1} \cdot(1
\end{aligned}
$$ Upon computing $\Phi_{105}(z)$, we can break the next term of $(5), \Phi_{15}(z)$ into smaller products in a similar fashion. We effectively compute $\Phi_{n}(z)$ by re-

cursion into the factors of n. We call this approach the recursive sparse cursion into the factors of n. We call this approa

A visual comparison of SPS1-4
We show the growth of the degree bound over the computation of $\Phi_{43730115}(z)$ and $\Phi_{3234846615}(z)$. In each version of the SPS2-4 the degree bound is at most
that of its predecessor over the computation of $\Phi_{n}(z)$. The degree bound fo SPSk, where $1 \leq k \leq 4$ is the height of the $4-(k-1)$ darkest regions of the plots; moreover, we think of the area of these $4-(k-1)$ regions as a
heuristic measure of the time cost of SPS. heuristic measure of the time cost of SPSk
Figure 1: Growth of the degree bound of SPS1-4 over the computation of $\Phi_{n}(z)$ for $n=43730115$ (left) and $n=3234846615$ (right)

Timings

A look at cyclotomic coefficients

 The plots in table 3 were produced by plotting a random subset of the termsof $\Phi(z)$ We plot degree s on the horizontal axis and the coefficient of the erm of degree s on the vertical. The terms of some $\Phi_{n}(z)$ appear highly

A challenge problem

Abstract

The least two integers such that $A(n)>n^{4}$ only differ by one prime factor

 Those are $1880394945=43 s$ and $2317696095=53 s$, where $s=43730115$We computed $\Phi_{n}(z)$, where $n=s \cdot 43 \cdot 53=99660932085$. A limitation of this problem is memory. Storing the coefficients of $\Phi_{n}(z)$ as 320 -bit integers requires over $\mathbf{7 5 0} \mathbf{G B}$ of space.
To compute $\Phi_{n}(z)$, we first compute the image of $-\Psi_{m}(z)$ modulo five 64 -bit primes q_{0}, \cdots, q_{4}, where $m=1880394945$. We then compute $g_{j} \bmod q_{i}$ for $0 \leq j<53,0 \leq i<5$, where the coefficients of g_{j} comprise hose of terms of $-\Psi_{m}(z)\left(1-z^{m}\right)^{-1}$ whose degre

$$
\sum_{j=0}^{52} z^{j} g_{j}\left(z^{53}\right)=\Psi_{m}(z)\left(1-z^{m}\right)^{-1} \quad\left(\bmod z^{\phi(n) / 2+1}\right),
$$

$$
\text { We thus have that, by lemma } 6 \text {, }
$$

$$
\sum_{j=0}^{52} z^{j} g_{j}\left(z^{53}\right) \Phi_{m}\left(z^{53}\right) \equiv \Phi_{n}(z) \bmod z^{\phi(n) / 2+1} .
$$

We computed $g_{j}(z) \Phi_{m}(z) \bmod q_{i}, 0 \leq j<53,0 \leq i<5$, and reconstructed g_{j} by Chinese remaindering. We distributed the computation to
three desktop computers.
$\mathrm{A}(99660932085)=612672087174078366708962023243952601$ 2472525473338153078678961755149378773915536447185370 , which is roughly $2^{291.6}$ or $n^{7.98}$. The computation took roughly 2 days. Tw hard disks valiantly died in previous, naive attempts to compute $\Phi_{n}()$.

References

I] P. Erdobs. On the co
 184,1946 coeficients of the cyclotomic polynomial. Bull. Amer. Math. Soc

22] H. Maier. The size of the coeficients of cyclotomic polynomials. In Analytic number
theory, Vol. 2 (Allerton Park, IL, 1995), volume 139 of Progr. Math., pagee 633 - 639 . theory, Vol. 2 (Allerton Park, IL, 1995), volume 139 of Progr. Math., pages 633 -33.
Birkhäser Boston, Boston, MA, 1996.

