
Zp(α1, . . . , αt)→ Zp(γ)

We must find {c2, . . . , ct} ⊂ Zp so that Zp(α1, . . . , αt) ∼= Zp(α1 + c2α2 + · · ·+ ctαt).

Theorem. If we randomly choose a set of numbers χ := {c2, . . . , ct} ⊂ Zp,
then the probability of choosing the “unlucky” χ such that
Zp(α1, . . . , αt) � Zp(γ = α1 + c2α2 + · · · + ctαt) is less than td2

p .

We use large p, so td2

p will be small. As such, we will pick c2, . . . , ct ∈ Zp at random.

Lemma. Let γ = α1 + c2α2 + · · ·+ ctαt be such that Zp(γ) ∼= Zp(α1, . . . , αt). Then

B1 := {1, γ, γ2, . . . , γd−1} is a basis for Zp(γ) and

B2 := {αj11 α
j2
2 · · ·α

jt
t , ji = 0, 1, . . . , di − 1} is a basis for Zp(α1, . . . , αt).

Thus we will build a d× d matrix C so that C is a change-of-basis matrix from
B1 to B2 and C−1 is a change-of-basis matrix from B2 to B1.

Choosing the “Right” Prime

We choose our prime p such that

•C is invertible in Zp.

• p is between 230 and 231.5, so that all numbers arising from our algorithm can be
mltiplied on a 64-bit machine without overflow.

• p is a Fourier prime (i.e. prime of form k · 2r + 1, k odd and r ≥ R, where 2R is
the smallest power of two greater than degx(f) + degx(g)).

Lemma. Of all Fourier primes between 230 and 231.5 for a givenN = 2R > degx(f)+
degx(g), the probability that a Fourier prime divides det(C) is at most

(d/2 + R · d) 2R

8.7459× 108
.

Since d, 2R � 8.7459× 108 we pick a random Fourier prime in (230, 231.5) as our p.

Benchmarks

Let f (x), g(x) ∈ Zp(α1, α2, α3)[x] where n = degx(f) = degx(g), and the coefficients
of f and g are chosen at random from Zp. α1 =

√
111, α2 =

√
131 and α3 =

√
171.

Zp(α1, α2, α3)[x] Zp(γ)[x]

n naive mult FFT mult. conversion 1 naive mult. FFT mult. conversion 2
12 0.146 0.074 0.013 0.003 0.010 0.003
24 0.541 0.152 0.017 0.008 0.024 0.005
48 2.096 0.344 0.024 0.032 0.054 0.010
96 8.207 0.770 0.045 0.128 0.123 0.019
192 32.533 1.704 0.096 0.471 0.293 0.039
384 129.620 3.767 0.252 1.908 0.693 0.078

Here α1, α2, α3 be algebraic numbers of degree 4 each.

Zp(α1, α2, α3)[x] Zp(γ)[x]

n naive mult. FFT mult. conversion 1 naive mult. FFT mult. conversion 2
12 1.408 0.562 0.390 0.058 0.028 0.083
24 4.987 1.191 0.505 0.207 0.067 0.224
48 18.262 2.506 0.881 0.782 0.151 0.386
96 70.710 5.279 1.626 3.119 0.367 0.778
192 280.522 11.258 4.037 12.350 0.836 1.566

Thus the overall cost of this strategy is O(d3 + nd2 + dn log2 n).
This is a considerable improvement over the naive strategy, especially for large n.

[[, , ...,] ,[, ,...,],...,[, ,...,]]
≤ d elements ≤ d elements ≤ d elements

(degx(f) + 1) lists

Problem 2: The multiplication is too slow: O(n2d2)

Solution: Use the fast Fourier Transform (FFT) to multiply the two bivariate
polynomials: O(nd2 + dn log2 n)

A Faster Multiplication Strategy

1. Choose p, a prime.

2. Convert fp, gp ∈ Zp(α1, . . . , αt)[x] to fγ, gγ ∈ Zp(γ)[x]. ←− O(d3 + nd2)

3. Multiply fγ and gγ ∈ Zp[z][x]/〈mγ(z)〉 using the FFT. ←− O(nd2 + dn log2 n)

4. Convert the product to a polynomial in Zp(α1, . . . , αt)[x]. ←− O(nd2)

Let d = deg(Zp(α1, . . . , αt)), and let degx(f), degx(g) ≤ n.
This takes O(n2d2) arithmetic operations in Q. Slow!

There are efficiency problems associated with this strategy.

Problem 1:
More variables in polynomial = more complicated recden data structure

Example. f := a + b + c + d + e ∈ Z7[a, b, c, d, e] in recden data structure is:
[[[[[0, 1], [1]], [[1]]], [[[1]]]], [[[[1]]]]].

Solution: Map K(α1, . . . , αt) to K(γ).

How to find γ? Let α2, . . . , αm be the conjugates of α(= α1) and let β2, . . . , βn
be the conjugates of β(= β1).

Let S =

{
αr − αs
βt − βu

: r, s ∈ {1, . . . ,m}, t, u ∈ {1, . . . , n}, t 6= u

}
.

Pick c ∈ K\S. Then K(α, β) ∼= K(γ := α + cβ).

We can generalize this to express the (t+1)-variate polynomial f in
Zp[u1, . . . , ut][x]/〈m1, . . . ,mt〉 as a bivariate polynomial in Zp[z][x]/〈mγ(z)〉.
⇒ simpler recden data structure!

In fact, f has the form:

Näıve Multiplication Strategy

•Convert f, g ∈ Q(α1, . . . , αt)[x] to recden polynomials
F,G ∈ Q[u1, . . . , ut][x]/〈m1, . . . ,mt〉 and multiply F and G “naively”.

f (x, y) = 13− 4y2z + 8x2y ∈ Z7[z][x, y]/〈z2 + 5〉 with x >lex y >lex z

≡ (6y0 + 0y1 + (0z0 + 3z1) y2) x0 + 0 x1 + (0y0 + 1y1) x2 mod 7

[[[6], 0, [0, 3]] , 0 , [0, [1]]]

x0 x1 x2

[6]

y0

0

y1

[0, 3]

y2

0

z0

3

z1

6

z0

0

y0

[1]

y1

1

z0

Representing f ∈ K(α1, . . . , αt)[x]

Fact. K(α1, . . . , αt) ∼= K[u1, . . . , ut]/〈m1, . . . ,mt〉, where mi := mi(ui) is the
minimal polynomial for αi over K for each i = 1, . . . , t.

So we consider f and g as (t+1)-variate polynomials inK[u1, . . . , ut][x]/〈m1, . . . ,mt〉.

We also need to choose a data structure to represent the polynomials. We will use a
recursive dense data structure (recden in Maple).

Example.

Initialize k to 1.

f, g ∈ Q(α1, . . . , αt)[x]

fpk, gpk ∈ Zpk(α1, . . . , αt)[x]
mod pk

fγ, gγ ∈ Zpk(γ)[x]

change of

basis

fg ∈ Q(α1, . . . , αt)[x]

fpkgpk ∈ Zpk(α1, . . . , αt)[x]

multiply

rational reconstruction
using {fp1gp1, . . . , fpkgpk} and CRT

fγgγ ∈ Zpk(γ)[x]
change of

basis

multiply

multiply

k ← k + 1

In this poster we will only be concerned with the algorithms performed within the
blue box above.

Motivation

Let f (x) and g(x) be dense polynomials in K[x] where K = Q(α1, . . . , αt) is an
algebraic number field and each αi /∈ Q(α1, . . . , αi−1, αi+1, . . . , αt).

How can we compute h(x) = f (x) · g(x) efficiently?

Overview of Strategy

Cory Ahn and Michael Monagan, Simon Fraser University

Multiplication of Univariate Polynomials Over Algebraic Number Fields

