On Sparse Interpolation over Finite Fields

Seyed Mohammad Mahdi Javadi, Michael Monagan

sjavadi@cs.sfu.ca, mmonagan@cecm.sfu.ca

The Problem
The problem of interpolating multivariate polynomials over a finite field is one of the most challenging problems in computer algebra. It has been of interest for a long time and has many applications and many solutions.

Let f be a multivariate polynomial in variables x_{1}, \ldots, x_{n} with t non-zero terms. The problem is given a black box that on input $\alpha_{1}, \ldots, \alpha_{n}$ outputs $f\left(x_{1}=\alpha_{1}, \ldots, x_{n}=\alpha_{n}\right.$, we want to find the target polynomial $f\left(x_{1} \ldots, x_{n}\right)$ by probing the black box at a series of evaluation points.

Newton's Interpolation Algorithm
The classical method is Newton's algorithm:
1 Let d be a bound on the degree of f in each variable x_{i}
2 Choose $\beta_{1}, \beta_{2}, \ldots, \beta_{d+1}$ random points
3 Recursively interpolate $f_{i}=f\left(x_{1}=\beta_{i}, x_{2}, \ldots, x_{n}\right)$ for $1 \leq i \leq d+1$
4 Use the Chinese remaindering algorithm to interpolate f from f_{1}, \ldots, f_{d+1}

Newton's algorithm does $(d+1)^{n}$ probes to the black box.
Example 1. For $f=x_{1}^{d}+x_{2}^{d}+\cdots+x_{n}^{d}+1$, Newton's algorithm does $(d+1)^{n}$ probes even though f has only $n+1$ non-zero terms.

Zippel's Sparse Interpolation Algorithm
The number of probes in Zippel's sparse interpolation algorithm is polynomial in t, the number of non-zero terms in the target polynomial f.
Idea: After interpolating the first image $f_{1}=f\left(x_{1}=\beta_{1}\right)$, one can use the form of f_{1} to compute f_{2}, \ldots, f_{d+1}. This is done by solving systems of linear equations.

Example 2. Let $f=4 x^{13} y^{2}-3 x^{5}+4 y^{3}-1$. Let $\beta_{1}=2$. We first interpolate $f_{1}=f\left(y=\beta_{1}\right)=$ Each f_{i} now can be computed using 3 probes to the black box.

Zippel's algorithm does $O(n d t)$ probes to the black box.
Problem: The number of probes in Zippel's algorithm still depends on a bound d on the degree of f in each variable.

Ben-Or/Tiwari Sparse Interpolation Algorithm

Let f be a polynomial with coefficients in \mathbb{Z}. In Ben-Or/Tiwari sparse interpolation algorithm, the number of probes does not depend on the degree. It only depends on T, a bound on the number of non-zero terms in f.
1 Let $p_{1}, p_{2}, \ldots, p_{n}$ be the first n prime numbers.
2 For $i=0, \ldots, 2 T-1$, Let b_{i} be the output of black box on $\left(p_{1}^{i}, \ldots, p_{n}^{i}\right)$.
3 Find the λ_{i} s.t. $b_{t+i}=\lambda_{t-1} b_{t+i-1}+\lambda_{t-2} b_{t+i-2}+\cdots+\lambda_{0} b_{i}$ for all $i \geq 0$.
4 Let $\Lambda(z)=z^{t}-\lambda_{t-1} z^{t-1}-\cdots-\lambda_{0}$.
5 Compute r_{1}, \ldots, r_{t}, the integer roots of $\Lambda(z)$.
6 Each r_{i} is equal to a monomial of f evaluated at $\left(x_{1}=p_{1}, x_{2}=p_{2}, \ldots, x_{n}=p_{n}\right)$
Find the monomials using integer divisions.
7 Find the coefficients of f by solving a system of linear equations.

Ben-Or/Tiwari algorithm does $2 T$ probes to the black box.
Example 3. Let $f(x, y)=4 x^{13} y^{2}-3 x^{5}+4 y^{3}-1$. We have $p_{1}=2, p_{2}=3$. Let $T=4$ be the bound on the number of terms in f. We have

$$
b_{0}=f\left(p_{1}^{0}, p_{2}^{0}\right)=4, b_{1}=f\left(p_{1}^{1}, p_{2}^{1}\right)=294923,
$$

$b_{2}=f\left(p_{1}^{2}, p_{2}^{2}\right)=21743271779, b_{3}=f\left(p_{1}^{3}, p_{2}^{3}\right)=1603087953277835$,
$b_{4}=f\left(p_{1}^{4}, p_{2}^{4}\right)=118192468620710277059, b_{5}=f\left(p_{1}^{5}, p_{2}^{5}\right)=8714094326467802463717803$,
$b_{6}=f\left(p_{1}^{6}, p_{2}^{6}\right)=642472746501818143233353336099$,
$b_{7}=f\left(p_{1}^{7}, p_{2}^{7}\right)=47368230654086048064431853086526155$.
Using the Berlekamp/Massey algorithm we find the linear generator for this sequence:

$$
\Lambda(z)=z^{4}-73788 z^{3}+4424603 z^{2}-68051808 z+63700992 .
$$

The roots of this polynomial are $73728=p_{1}^{13} \times p_{2}^{2}, 32=p_{1}^{5}, 27=p_{2}^{3}$ and 1 . Hence the monomials are $x^{13} y^{2}, x^{5}, y^{3}$ and 1 .

Problem: Unfortunately one can not use this algorithm for a polynomial over a finite field unless he characteristic p is very large. Let $f=\sum_{i=1}^{t} C_{i} M_{i} \in \mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$. Choose (α_{1}, \ldots \mathbb{Z}_{n}^{n} at random. One can use Steps 1 to 5 of the Ben-Or/Tiw, ${ }_{l}=$ p_{p} a random. One can use Steps to mone degrees of the monomials by their images $r_{1} \ldots, r_{t}$ using only integer divisions in \mathbb{Z}_{p}.

Our New Sparse Interpolation Algorithm
Our sparse interpolation algorithm is a modification of the Ben-Or/Tiwari algorithm for polynonials over finite fields. It costs an extra factor of $O(n)$ probes.
dea: We choose the evaluation point $\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right) \in \mathbb{Z}_{p}^{n+1}$ at random. We first run the first five steps of the Ben-Or/Tiwari algorithm to find the images of the monomials r_{i} $M_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. To find the degrees of the monomials in the variable x_{j}, we replace α_{j} by α_{n+1} We run the first 5 steps again and we find $\bar{r}_{i}=M_{i}\left(\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{n+1}, \alpha_{j+1}, \ldots, \alpha_{n}\right)$. Observation: We have

$$
\frac{r_{i}}{\bar{r}_{i}}=\left(\frac{\alpha_{j}}{\alpha_{n+1}}\right)^{d_{i}},
$$

where $d_{i}=\operatorname{deg}_{x_{i}}\left(M_{i}\right)$. We will use this fact to find the degrees of all the monomials in x_{j}. The problem is we need to match the root r_{i} with the corresponding root \bar{r}_{i}. To do this, we use bipa matching algorithm from graph theory

Example 4. Let $f=25 y^{2} z+90 y z^{2}+93 x^{2} y^{2} z+60 y^{4} z+42 z^{5} \in \mathbb{Z}_{101}[x, y, z]$. Here $t=5, n=3$. the following evaluation points $\alpha_{1}=85, \alpha_{2}=96, \alpha_{3}=58$ and $\alpha_{4}=99$ Suppose we want to find the degrees of the monomials in y. We run the first steps of the Ben-Or/Tiwari algorithm for both $\beta_{1}=\left(x=\alpha_{1}, y=\alpha_{2}, z=\alpha_{3}\right)$ and $\beta_{2}=\left(x=\alpha_{1}, y=\alpha_{4}, z=\alpha_{3}\right)$. We obtain two sets of roots $R=\{36,47,25,92,87\}$ and $\vec{R}=\{30,39,4,19,87\}$. Let the graph G be a bipartite graph with nodes R and \bar{R} such that r_{i} is connected to \bar{r}_{j} if and only if

$$
\frac{r_{i}}{\bar{r}_{j}}=\left(\frac{\alpha_{2}}{\alpha_{4}}\right)^{e},
$$

for some $0 \leq e \leq d=40$. We have

We try to find a perfect matching in this graph. The edges which are in the perfect matching are highlighted in red. We find that the degrees of the monomials in y are $2,1,2,4$ and 0 .

Protobox

In 2000, Kaltofen et al., presented a hybrid of Zippel and Ben-Or Tiwari algorithms which they call a racing algorithm. To interpolate the next variable, their algorithm runs a Newton interpolation and univariate Ben-Or/Tiwari algorithm, stopping when the first succeeds to reduce the number of probes. The purpose of the early termination technique is to avoid using bounds for determining the termination point in an algorithm. Instead the racing algorithm stops when the interpolated polynomial does not change after a certain number of probes to the black box
Benchmarks
$f_{i} \in \mathbb{Z}_{p}\left[x_{1}, \ldots, x_{6}\right]$ where $p=3037000453$. We have $\# f_{i} \approx 2^{i}$ and $d=30$. DNF means "Did Not
Finish"

	\#f	New Algorithm		Zippel		$\begin{array}{\|c} \hline \text { ProtoBox } \\ \hline \text { Probes } \\ \hline \end{array}$
		Time	Probes	Time	Probes	
	2	0	24	0.01		
2	3	. 00	36	0.01	65	
	8	0.00	96	0.01	136	40
	16	0.00	192	0.02	251	84
	31	0.00	372	0.05	43	
	64	0.02	768	0.15	806	995
	127	0.06	1524	0.4	146	
	255	0.21	3060	1.51	276	3615
	511	0.81	6132	5.19	505	66
10	1016	3.10	12192	17.94	909	12591
11	2037	12.20	2444	65.35	1682	
12	4083	48.06	48996	230.60		DN
13	815	189	97812	803.26		DNF

References

[1] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM '79: Proc. of the International Iebraic Computation, pages 216-226, London, UK, 1979. [2] P. Tiwari M. Ben-Or. A deterministic algorithm for sparse multivariate polynomial interpolation. In S
Proc. of the twentieth annual ACM symposium on Theory of computing, pages $301-309,1988$ ACM. [3] Erich Kaltofen and Wen-shin Lee. Early termination in sparse interpolation algorithms. J. Symb. Comput, 36(3)
4):365-400, 2003.

