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Mathematical Operations
Common manipulations (simplify,
factor, expand,…) Right-click expression and select from menu

Solve equations Right-click equation Solve

Solve numerically (floating-point) Right-click equation Numerically Solve 

Solve ODE Right-click DE expression Solve DE Interactively

Integrate, differentiate Right-click expression Integrate or Differentiate

Evaluate expression at a point Right-click expression Evaluate at a Point

Create a matrix or vector Matrix palette Choose Insert

Invert, transpose, solve matrix
Right-click matrix Standard Operations select
Inverse, Transpose, ...

Evaluate as floating-point Right-click expression Approximate

Various operations and tasks Use Task Templates: Tools Tasks Browse

Expressions vs. Functions
Operations Expression x2+y2 Function (operator) g(x,y) = x2+y2

Definition !"#$"%&'"(")&'* +"#$",%-)."/0""%&'()&'*

Evaluate at x=1, y=2 1234,!-"5%$6-)$'7.*"produces 5 +,6-'.*"produces 5

3-D plot for x from 0 to 1, y from 0 to 1 849:;<,!-%$=>>6-)$=>>6.* 849:;<,+,%-).-%$=>>6-)$=>>6.*

Conversion to other form
!'"#$"?@3884),!-%-).*

!',6-'.*

produces 5

+'"#$"+,%-6.*""

+'"("A*

produces x2+1+z

Units and Tolerances

Add units to value or expression
Place cursor to right of quantity. Use Units (SI) or 
Units (FPS) palette or right-click Units Affix unit.

Add arbitrary unit from Units (SI) or Units (FPS) palette and
enter desired unit

Simplify units in an expression Right-click expression Units Simplify

Convert units Right-click expression Units Convert

Enable automatic units simplification BC:D,E@C:F5G:3@<3H<7.*

Enable tolerance calculations BC:D,I941H3@J1F.*

Tolerance quantity in 2-D Math !"#$ %&% for 9 ± 1.1

Tolerance quantity in 1-D Math K"L(/"6>6* for 9 ± 1.1

Input and Output
Interactive data import assistant Tools Assistants Import Data

Import audio or image file Tools Assistants Import Data

Code generation (C, FORTRAN,
Java, Visual Basic®, MATLAB®)

Right-click expression Language Conversions. 
See ?CodeGeneration for help and details.

Publish document in HTML, PDF,
LaTeX, or Microsoft® Word-RTF

File Export As select HTML, PDF, LaTeX, 
or Rich Text Format

Select Interactive Tools and Utilities
Quick introductory tour Help Take a Tour of Maple

Show available task templates Tools Tasks Browse

Plot Builder
Right-click expression Plots Plot Builder, 
or Tools Assistants Plot Builder

ODE Analyzer Tools Assistants ODE Analyzer

Data Analysis Assistant Tools Assistants Data Analysis

Unit Conversion utility Tools Assistants Units Calculator

Back-Solving Assistant Tools Assistants BackSolver

Apply numeric formatting Right-click expression Numeric Formatting

Maple Portal Help      Manuals, Resources and more 
Maple Portal

Manuals Help Manuals, Resources, and more Manuals

Graphing Calculator Interface Installs as separate program. Launch from Start
Maple Maple Calculator

Interactive education tutors for 
topics in Calculus, Precalculus, 
and Linear Algebra

Tools Tutors
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Important Maple Syntax
#$ Assignment 3#$'*"M#$;(%*"J#$3(M* produces 5 + x for J

$ Mathematical equation F9421,'N%"("3"$"6-%.* produces x =
1-a
—
2

$ Boolean equality C!"3"$"="":D1@"O

Suppress display of output Terminate command with a colon, e.g. 6===P"#

[ ]  List (ordered) A#$5J-"M-"37*"A567* produces c

{ } Set (unordered, no duplicates) Q3-"M-"3-"JR* produces {a,b,c }

Display help on topic S:98CJ
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Plotting and Animation
Plot an existing expression - click expression Plots Plot Builder

Plot new expression Tools Assistants Plot Builder

Add new expression to existing plot Highlight and drag expression into plot

Add annotations to plots Click on plot, then on the toolbar

Animation and parameter plots for 
functions of several variables

Right-click expression Plots Plot Builder
and select a plot type

!"#$%&'(&)*+,-&.%/%0%1,%&2"03& Windows® version

(α1, . . . , αn) ∈ Rn f (α1, . . . , αn) ∈ R

The Problem
The problem of interpolating multivariate polynomials over a finite field is one of the most chal-
lenging problems in computer algebra. It has been of interest for a long time and has many
applications and many solutions.

Let f be a multivariate polynomial in variables x1, . . . , xn with t non-zero terms. The problem is
given a black box that on input α1, . . . , αn outputs f (x1 = α1, . . . , xn = αn), we want to find the
target polynomial f (x1 . . . , xn) by probing the black box at a series of evaluation points.

Newton’s Interpolation Algorithm
The classical method is Newton’s algorithm:

1 Let d be a bound on the degree of f in each variable xi

2 Choose β1, β2, . . . , βd+1 random points

3 Recursively interpolate fi = f (x1 = βi, x2, . . . , xn) for 1 ≤ i ≤ d + 1

4 Use the Chinese remaindering algorithm to interpolate f from f1, . . . , fd+1

Newton’s algorithm does (d + 1)n probes to the black box.

Example 1. For f = xd1 +xd2 + · · ·+xdn+ 1, Newton’s algorithm does (d+ 1)n probes even though
f has only n + 1 non-zero terms.

Zippel’s Sparse Interpolation Algorithm
The number of probes in Zippel’s sparse interpolation algorithm is polynomial in t, the number of
non-zero terms in the target polynomial f .

Idea: After interpolating the first image f1 = f (x1 = β1), one can use the form of f1 to compute
f2, . . . , fd+1. This is done by solving systems of linear equations.

Example 2. Let f = 4x13y2 − 3x5 + 4y3 − 1. Let β1 = 2. We first interpolate f1 = f (y = β1) =
16x13−3x5 +31 using 14 probes to the black box. We assume the form for f : g = Ax13 +Bx5 +C.
Each fi now can be computed using 3 probes to the black box.

Zippel’s algorithm does O(ndt) probes to the black box.

Problem: The number of probes in Zippel’s algorithm still depends on a bound d on the degree of
f in each variable.

Ben-Or/Tiwari Sparse Interpolation Algorithm
Let f be a polynomial with coefficients in Z. In Ben-Or/Tiwari sparse interpolation algorithm, the
number of probes does not depend on the degree. It only depends on T , a bound on the number of
non-zero terms in f .

1 Let p1, p2, . . . , pn be the first n prime numbers.

2 For i = 0, . . . , 2T − 1, Let bi be the output of black box on (pi1, . . . , p
i
n).

3 Find the λi s.t. bt+i = λt−1bt+i−1 + λt−2bt+i−2 + · · · + λ0bi for all i ≥ 0.

4 Let Λ(z) = zt − λt−1z
t−1 − · · · − λ0.

5 Compute r1, . . . , rt, the integer roots of Λ(z).
6 Each ri is equal to a monomial of f evaluated at (x1 = p1, x2 = p2, . . . , xn = pn).

Find the monomials using integer divisions.
7 Find the coefficients of f by solving a system of linear equations.

Ben-Or/Tiwari algorithm does 2T probes to the black box.

Example 3. Let f (x, y) = 4x13y2 − 3x5 + 4y3 − 1. We have p1 = 2, p2 = 3. Let T = 4 be the
bound on the number of terms in f . We have

b0 = f (p0
1, p

0
2) = 4, b1 = f (p1

1, p
1
2) = 294923,

b2 = f (p2
1, p

2
2) = 21743271779, b3 = f (p3

1, p
3
2) = 1603087953277835,

b4 = f (p4
1, p

4
2) = 118192468620710277059, b5 = f (p5

1, p
5
2) = 8714094326467802463717803,

b6 = f (p6
1, p

6
2) = 642472746501818143233353336099,

b7 = f (p7
1, p

7
2) = 47368230654086048064431853086526155.

Using the Berlekamp/Massey algorithm we find the linear generator for this sequence:

Λ(z) = z4 − 73788 z3 + 4424603 z2 − 68051808 z + 63700992.

The roots of this polynomial are 73728 = p13
1 × p

2
2, 32 = p5

1, 27 = p3
2 and 1. Hence the monomials

are x13y2, x5, y3 and 1.

Problem: Unfortunately one can not use this algorithm for a polynomial over a finite field unless
the characteristic p is very large. Let f =

∑t
i=1CiMi ∈ Zp[x1, . . . , xn]. Choose (α1, . . . , αn) ∈

Znp at random. One can use Steps 1 to 5 of the Ben-Or/Tiwari algorithm to find the images of the
monomials ri = Mi(α1, . . . , αn) mod p. The problem is that we can not uniquely determine the
degrees of the monomials by their images r1, . . . , rt using only integer divisions in Zp.

Our New Sparse Interpolation Algorithm
Our sparse interpolation algorithm is a modification of the Ben-Or/Tiwari algorithm for polyno-
mials over finite fields. It costs an extra factor of O(n) probes.

Idea: We choose the evaluation point (α1, . . . , αn, αn+1) ∈ Zn+1
p at random. We first run

the first five steps of the Ben-Or/Tiwari algorithm to find the images of the monomials ri =
Mi(α1, . . . , αn). To find the degrees of the monomials in the variable xj, we replace αj by αn+1.
We run the first 5 steps again and we find r̄i = Mi(α1, . . . , αj−1, αn+1, αj+1, . . . , αn).

Observation: We have

ri
r̄i

= (
αj
αn+1

)di,

where di = degxj(Mi). We will use this fact to find the degrees of all the monomials in xj. The
problem is we need to match the root ri with the corresponding root r̄i. To do this, we use bipartite
matching algorithm from graph theory.

Our new algorithm does 2nT probes to the black box.
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Example 4. Let f = 25y2z + 90yz2 + 93x2y2z + 60y4z + 42z5 ∈ Z101[x, y, z]. Here t = 5, n = 3.
Suppose we now that the degree bound on the degree of f in each variable is d = 40. We choose
the following evaluation points α1 = 85, α2 = 96, α3 = 58 and α4 = 99. Suppose we want to find
the degrees of the monomials in y. We run the first steps of the Ben-Or/Tiwari algorithm for both
β1 = (x = α1, y = α2, z = α3) and β2 = (x = α1, y = α4, z = α3). We obtain two sets of roots
R = {36, 47, 25, 92, 87} and R̄ = {30, 39, 4, 19, 87}. Let the graph G be a bipartite graph with
nodes R and R̄ such that ri is connected to r̄j if and only if

ri
r̄j

= (
α2

α4
)e,

for some 0 ≤ e ≤ d = 40. We have

We try to find a perfect matching in this graph. The edges which are in the perfect matching are
highlighted in red. We find that the degrees of the monomials in y are 2, 1, 2, 4 and 0.

Protobox
In 2000, Kaltofen et al., presented a hybrid of Zippel and Ben-Or Tiwari algorithms which they call
a racing algorithm. To interpolate the next variable, their algorithm runs a Newton interpolation
and univariate Ben-Or/Tiwari algorithm, stopping when the first succeeds to reduce the number of
probes. The purpose of the early termination technique is to avoid using bounds for determining
the termination point in an algorithm. Instead the racing algorithm stops when the interpolated
polynomial does not change after a certain number of probes to the black box.

Benchmarks
fi ∈ Zp[x1, . . . , x6] where p = 3037000453. We have #fi ≈ 2i and d = 30. DNF means “Did Not
Finish”.

i #f New Algorithm Zippel ProtoBox
Time Probes Time Probes Probes

1 2 0.00 24 0.01 496 37
2 3 0.00 36 0.01 651 59
3 8 0.00 96 0.01 1364 140
4 16 0.00 192 0.02 2511 284
5 31 0.00 372 0.05 4340 521
6 64 0.02 768 0.15 8060 995
7 127 0.06 1524 0.44 14601 1871
8 255 0.21 3060 1.51 27652 3615
9 511 0.81 6132 5.19 50530 6692

10 1016 3.10 12192 17.94 90985 12591
11 2037 12.20 24444 65.35 168299 DNF
12 4083 48.06 48996 230.60 301320 DNF
13 8151 189.21 97812 803.26 532549 DNF
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