SFU

 A New Polynomial Data Structure For Maple Roman Pearce Michael Monagan
Polynomial Representation

Maple's current representation for polynomials is a sparse sum of products:

$$
9 x y^{3} z-4 y^{3} z^{2}-6 x y^{2} z-8 x^{3}-5
$$

This is slow for large polynomials because:

- common operations must examine every term (e.g. degree, set of variables, type checks)
- each monomial adds overhead to the system
- monomials are spread out all over memory
- monomial operations are complicated

Maple also sorts polynomials by monomial address, so whenever monomials are changed it must re-sort.

Overhead of Maple's Representation
Multiply $f=(1+x+y+z)^{20}$ and $g=f+1$
Total time: 0.028 sec

On sparse problems (and dense problems with dense algorithms) the overhead can be over 97%.

Packed Monomials

Our software (sdmp) uses a packed distributed format to achieve high performance. Monomials are represented as machine integers.

$$
\left.\begin{array}{cc}
x^{3} y^{2} z^{1} \\
\text { degree: } 6
\end{array} \quad \begin{array}{lll}
{\left[\begin{array}{lll}
6 & 3 & 2
\end{array}\right]}
\end{array}\right] \begin{array}{r}
00000110000000110000001000000001 \\
\end{array} \quad \text { exponents } \quad \text { bits on a 32-bit computer }
$$

- Monomial multiplication adds machine integers in C
- To divide monomials, we subtract and check for underflow
- Term ordering uses unsigned integer comparisons

Poly DAG

Polynomials with integer coefficients have a new dag:

It uses graded lexicographical order. Polynomials will appear sorted.
The maximum total degree is determined by the number of variables:

\# variables	32-bit max	64-bit max
2	1023	2097151
3	255	65535
4	64	4095
5	31	1023
6	15	511
7	15	255
8	7	127

Many operations go from $O(n) \longrightarrow O(1)$:

- indets (f) and $\operatorname{has}(f, x)$ look at the variables
- $\operatorname{degree}(f)$ and $l \operatorname{coeff}(f)$ look at the first term
- expand (f), normal (f), numer (f), denom (f) do nothing
- type (f, polynom) knows it is a polynomial over \mathbb{Z}

Overhead is 20x lower with this new data structure.

