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Introduction
Given a natural number n, one of the most fundamental problems
in algebra is representing n as a product of primes. Likewise,
given an ideal I in a polynomial ring k[x1, . . . , xn], one of the
most fundamental operations that can be performed on I is to
represent the radical of I as the intersection of prime ideals,

√
I = P1 ∩ P2 ∩ · · · ∩ Pr

This decomposition, which corresponds to writing the set of solu-
tions of I as a union of irreducible solution sets, has applications
solving polynomial systems and in Automatic Theorem Proving.

Example from Theorem Proving

Steiner’s Triangle Theorem
Let ABC ′, BCA′, and CAB′

be three equilateral triangles

drawn all outward or all in-

ward on the three sides of an

arbitrary triangle ABC. Then

the three lines AA′, BB′, and

CC ′ are concurrent.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1. The following six polynomials represent the hy-
potheses of Steiner’s Triangle Theorem:

h1 = 2y1 − 1 = 0 (AC ′ = BC ′)

h2 = y21 + y22 − 1 = 0 (AC ′ = AB)

h3 = y23 + y24 − u21 − u22 = 0 (AB′ = AC)

h4 = y23 + y24 − (y3 − u1)
2 − (y4 − u2)

2 = 0 (AB′ = CB′)

h5 = (y5 − 1)2 + y26 − (u1 − 1)2 − u22 = 0 (BA′ = BC)

h6 = (y5 − 1)2 + y26 − (y5 − u1)
2 − (y6 − u2)

2 = 0 (BA′ = CA)

To prove Steiner’s Triangle Theorem automatically, the ideal
<h1, h2, h3, h4, h5, h6> must be decomposed as the intersec-
tion of prime ideals. The algorithms for prime decomposition
built into Maple 14 and Magma V2.16−10 failed to return af-
ter running for an hour on a machine with a 3GHz Intel Xeon
processor and 20GB of memory.

Our Approach
There are well known algorithms for prime decomposition which are ef-
ficient for zero dimensional ideals (see chapter 8 of Becker [1]). Unfor-
tunately, in the standard algorithms a positive dimensional ideal must be
written in terms of zero dimensional ideals in parametrized polynomial
rings, which is slow. Because of this, we decided to augment the stan-
dard algorithm for prime decomposition of positive dimensional ideals by
splitting one large decomposition into several small ones.

Lemma (Splitting Lemma). Suppose that I ⊂ k[x1, . . . , xn] and there
exist f, g ∈ k[x1, . . . , xn] such that f · g ∈ I . Then

√
I =

√
<I, f> ∩

√
<I, g>.

In addition to using this lemma, we also added several heuristic tests to
identify prime ideals and speed up zero dimensional decomposition.

Example 2. Consider the positive dimensional ideal

I =<(x− 2)(x2 + y2 − 1), (y − 3)(x2 + y2 − 1)>

Applying the splitting lemma on the first generator gives
√
I =

√
<x− 2, (y − 3)(y2 + 3)> ∩

√
<x2 + y2 − 1>

The first ideal in the above decomposition is zero dimensional and
the second is clearly prime because it is a principal ideal with an ir-
reducible generator. Furthermore, applying the splitting lemma again
gives the prime decomposition
√
I =<x− 2, y2 + 3> ∩ <x− 2, y − 3> ∩ <x2 + y2 − 1>

Unfortunately, we may not always be able to split until we obtain prime (or
even zero dimensional) ideals. In the worst case, we have to use a standard
algorithm for prime decomposition on some of the split components.

Results
We implemented this improved algorithm in Maple 14, using Maple’s
PolynomialIdeals package to finish the prime decomposition if the split-
ting and heuristic tests failed. The improved algorithm was run on a set
of 36 test ideals compiled from a variety of sources, most notably the
POSSO test suite. Of these 36 ideals, Maple’s built in algorithm could
only decompose 12. In contrast, our improved algorithm decomposed 26
of the ideals with many of the decompositions occurring in seconds. It is
notable that our improved algorithm split the 26 ideals into 397 compo-
nents, only 21 of which did not pass the heuristic tests.

Timings
Below is a selection of the results comparing our improved algo-
rithm to the algorithm built into Maple 14. These results were
taken from a machine with a 3GHz Intel Xeon processor and
20GB of memory, and a dash means that the algorithm failed to
terminate after 350 seconds. Any ideal whose name begins with
a capital letter comes from the automatic proof of a geometric
theorem.

Ideal Variables Components Maple Improved
after Split Time Time

butcher 7 10 − 0.404
butcher8 8 8 − 0.452
circles 5 2 6.206 2.501
cyclic4 4 2 0.135 0.022

discriminant4 4 3 0.202 0.872
gerdt85 7 34 − 2.836

gonnet83 17 18 − 0.523
hairer1 8 1 0.966 0.339

Incenter Thm 6 34 − 2.130
krider 10 8 − 6.968

Orthocenter Thm 8 23 − 4.025
Parallelogram Thm 7 5 − 0.067

pavelle 8 1 0.548 0.026
Steiner Triangle 8 11 − 3.532
Steiner-Lehmus 6 12 − 50.696

symmetric5 5 42 52.368 119.404
vermeer 5 2 6.270 0.645
wang89 4 2 0.094 0.108
wang92a 7 1 − 0.074
wang92c 4 6 41.103 0.752
wang92f 17 44 − 5.341

Table 1: Timings in CPU seconds
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