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What are cyclotomic polynomials?

Definition 1. The nth cyclotomic polynomial, n(z), is the monic polynomial in Z[z] whose roots
are the ϕ(n) primitive roots of unity.

n(z) =
n−1
∏

d=0
gcd(d,n)=1

(1− zd)

Here are some basic properties of cyclotomic polynomials:

Lemma 1. If n > 1, then the coefficients of n(z) are palindromic. That is, for n(z) =
∑ϕ(n)

k=0
kzk, it

holds that j = ϕ(n)−j.

Lemma 2. If n is odd, then 2n(z) = n(−z).
Lemma 3. If p is a prime that divides n, then np(z) = n(zp).

Here are the first nine cyclotomic polynomials:

1(z) = z − 1 2(z) = z + 1 3(z) = z2 + z + 1
4(z) = z2 + 1 5(z) = z4 + z3 + z2 + z + 1 6(z) = z4 + z2 + 1
7(z) = z6 + z5 + z4 + z3 + z2 + z + 1 8(z) = z4 + 1 9(z) = z6 + z3 + 1

Observe that the coefficients are all 1 or −1. This holds for the first 104 cyclotomic polynomials; however,

105(z) = 1+ z+ z2+ z4− z5− z6−2z7− z8− z9+ z12+ z13+ z14+ z15+ z16+ z17− z20− z22− z24− z26−

z28 + z31 + z32 + z33 + z34 + z35 + z36 − z39 − z40 −2z41 − z42 − z43 + z46 + z47 + z48.

We say that 105(z) has height 2.

Definition 2. The height of n(z), A(n), is the maximum of the absolute values of the coefficients
of (n). That is, for n(z) =

∑ϕ(n)
k=0

kzk, A(n) = mx
1≤k≤ϕ(n)

|k|.

For cyclotomic polynomials n(z) that can be easily computed with most computer algebra systems, A(n)
is typically small. In fact, for n < 106, A(n) ≤ 60000. One might guess that A(n) is bounded by n. Erdõs,
however, proved the following:

Theorem 1. (Erdõs) [3] For all c > 0, there exists n such that A(n) > nc.

We aim is to answer the question: What is the smallest n such that A(n) is greater than n? n2?
n3? . . . . As far as we know, no one has previously calculated n(z) with n > A(n). Here is what we have
computed to date:

c min(n) for which A(n) > nc A(n)
1 1181895 14102773
2 43730115 31484567640915734941
3 416690995 80103182105128365570406901971
4 1880394945 64540997036010911566826446181523888971563

Table 1: Smallest n such that A(n) > nc, for 1 ≤ c ≤ 4.

To compute these results, we needed to develop faster algorithms to calculate n(z). We present two
such algorithms in this poster.

By lemmas 2 and 3, we know that if we introduce repeated factors or powers of 2 into n, that it will not
result in a cyclotomic polynomial n(z) of greater height; therefore, our algorithms are designed with
squarefree, odd n in mind.

The sparse power series algorithm

The following identity is well-known:

Lemma 4. [2] For n > 1, n(z) =
∏

d|n
(1− zd)μ(

n
d
) =









∏

μ(
n
d
)=1

(1− zd)









÷









∏

μ(
n
d
)=−1

(1− zd)









,

where μ is the mobius function. (μ(n) = 1 for squarefree n with an even number of prime factors;
μ(n) = −1 for squarefree n with an odd number of prime factors; μ(n) = 0 for n not squarefree.)

For instance,

3·5·7(z) =
(1− z105)(1− z3)(1− z5)(1− z7)
(1− z35)(1− z21)(1− z15)(1− z)

Given a power series ƒ (z) =
∑∞

k=0
kzk, ƒ ∈ Z[[z]], we can retrieve the first m terms of the both the

product ƒ (z) · (1− zd) and quotient ƒ (z)
1−zd in O(m) operations in Z. This is seen in the algorithm described

hereafter:

Input: n = p1p2 · · ·pk, a product of k distinct primes.
Output: 0, 1, · · · , ϕ(n)

2 +1
, the first half of the coefficients of n(z)

M←
ϕ(n)

2
+ 1, (0)← 1, for 1 ≤  ≤ M do ()←− 0

for d|n, d > 0 do

if
n

d
has an even number of prime factors then

for k = 0 to M− d do M−k ← M−k − (M−k)−d (divide by 1− zd)
else

for k = d to M do k ← k + k−d (multiply by 1− zd)

Algorithm 1: Computing n(z) as a quotient of sparse power series

We only need to calculate half the terms of n(z), as the coefficients are palindromic by lemma 1. The
algorithm takes O(2kn) arithmetic operations in Z.

The "big prime" algorithm

Calculating cyclotomic polynomials of very large degree using algorithm 1 can bode problematic, as
oftentimes n(z) will not fit in main memory. In such a case, there are a variety of approaches to
calculate n(z).

One approach is to calculate n(z) modulo primes p sufficiently small that we can fit n(z) in memory
and write the images to hard disk. We then use Chinese remaindering to reconstruct the coefficients of
n(z) sequentially from the images of n(z) mod p. This minimizes the amount of computation we have
to do on the hard disk.

For yet larger cyclotomic polynomials, we may not even be able to store the coefficients modulo a prime
in memory. In which case we may be forced to write n(z) and our intermediate work to disk. This proves
most costly, as the hard disk bottlenecks the algorithm. In such instances, we need a low-memory
algorithm to calculate n(z). Our low-memory approach requires the following definition and lemma:

Definition 3. For notational convenience, we define Ψn(z) =
1− zn

n(z)
.

Lemma 5. Let p be a prime such that p -m, then mp(z) =
m(zp)

m(z)
= m(zp) ·

�

Ψm(z) ·
1

1− zm

�

.

Given n = mp, our approach to compute n(z) is roughly as follows: We first calculate m(z) and Ψm(z).
We can very easily calculate Ψm(z) in a manner similar to algorithm 1. We then multiply m(zp) by the
power series of Ψm(z)1−zm in a "forgetful" manner.

If we write

m(z) = b0 + b1z + . . .+ bϕ(m)zϕ(m), and Ψm(z) = c0 + c1z + . . .+ cm−ϕ(m)zm−ϕ(m),

then it follows from lemma 5 that

n(z) =





∑

=p+j

bcj · z




�

1+ zm + z2m + z3m + . . .

�

=
∑

≡p+j mod m

bcj · z.

Thus, if we write n(z) = 0 + 1z + . . .+ ϕ(n)zϕ(n), we get the recurrence:

 = −m +
∑

=p+j

bcj.

Using this recursion we compute the coefficients of n(z) sequentially, while storing only m coefficients.

Input: n = p1p2 · · ·pk, a product of k distinct primes.
̄0, ̄1, . . . , ̄m, an array
Output: A, the height of n(z)
m← p1p2 . . . pk−1, A← 0

b0, b1, . . . , bϕ(m)← the coefficients of m(z), c0, c1, . . . , cm−ϕ(m)← the coefficients of

�

zm − 1
m(z)

�

̄0, ̄1 . . . , ̄m−1← 0,0, . . . ,0
← 0, ← 0

while  ≤
ϕ(n)

2
do

for j = 0 to m− ϕ(m) do
̄(+j mod m)← ̄(+j mod m) + b · cj, if j < pk and |̄(+j mod m)| > A then A← |̄(+j mod m)|

← + 1, ← + pk
return A

Algorithm 2: A low-memory algorithm to obtain the height of n(z)

We temporarily store the th coefficient of n(z), , in the ( mod m)th location in our array, ̄ mod m.

Algorithm 2 takes O
�
�

n
pk

�2�

arithmetic operations in Z. The space complexity is O
�

n
pk

�

. Clearly, the
algorithm works best for n with a large prime divisor pk. As such, we call it the "big prime" algorithm.

Computational Results

Cyclotomic Polynomials of Large Height

We have computed a library of data on the heights and lengths of cyclotomic polynomials. This data is
available at http://www.cecm.sfu.ca/~ada26/cyclotomic/. Table 2, below, shows n(z) of increasing
height:

n A(n)
1 1

105 2
385 3

1365 4
1785 5
2805 6
3135 7
6545 9

10465 14
11305 23
17255 25

n A(n)
20615 27
26565 59
40755 359

106743 397
171717 434
255255 532
279565 1182
327845 31010
707455 35111
886445 44125
983535 59815

n A(n)
1181895 14102773
1752465 14703509
3949491 56938657
8070699 74989473

10163195 1376877780831
13441645 1475674234751
15069565 1666495909761
30489585 2201904353336
37495115 2286541988726
40324935 2699208408726
43730115 862550638890874931

n factorization of n A(n)
169828113 (3)(7)(13)(17)(23)(37)(43) 31484567640915734941
185626077 (3)(7)(13)(17)(23)(37)(47) 42337944402802720258
416690995 (5)(7)(17)(19)(29)(31)(41) 80103182105128365570406901971
437017385 (5)(7)(17)(19)(29)(31)(43) 86711753206816303264095919005
712407185 (5)(7)(17)(19)(29)(41)(53) 111859370951526698803198257925

1250072985 (3)(5)(7)(17)(19)(29)(31)(41) 137565800042644454188531306886
1311052155 (3)(5)(7)(17)(19)(29)(31)(43) 192892314415997583551731009410
1880394945 (3)(5)(11)(13)(19)(29)(37)(43) 64540997036010911566826446181523888971563
2317696095 (3)(5)(11)(13)(19)(29)(37)(53) 67075962666923019823602030663153118803367

Table 2: n such that A(n) > A(m) for m< n.

We are currently computing n(z), for n = 99660932085 = 3 · 5 · 11 · 13 · 19 · 29 · 37 · 43 · 53, to 192-bit
precision using algorithm 1. We expect it to have a greater height than that of any previously computed
cyclotomic polynomial.

Flat cyclotomic polynomials

Definition 4. A polynomial is flat if it has height one.

Definition 5. The order of a cyclotomic polynomial n(z) is the number of distinct odd prime
factors that divide n.

A question we are currently researching is: Are there flat cyclotomic polynomials of order five?
It holds that A(p) = 1 for all primes p and A(pq) = 1 for all primes p,q. There are also infinitely many
flat cyclotomic polynomials of order three [1][4], and we have computed flat cyclotomic polynomials of
order four (3·5·29·1741(z), is the first such example). To our knowledge, however, no one has yet found
a flat cyclotomic polynomial of order five. We are using a two-pronged search: calculation of select
examples of n(z) of order five, for which we expect A(n) to be small (typically for very large n), and
an exhaustive computation of cyclotomic polynomials n(z) of order five, for small n. To date, we have
calculated every cyclotomic polynomial n(z) of order five for squarefree, odd n < 2 · 108. Here are the
cyclotomic polynomials of smallest height that we have computed:

n factorization of n A(n)
48713385 (3)(5)(7)(47)(9871) 5
61944015 (3)(5)(7)(53)(11131) 5
76762245 (3)(5)(7)(59)(12391) 4
82041645 (3)(5)(7)(61)(12809) 5
97411965 (3)(5)(7)(47)(19739) 5

117496785 (3)(5)(7)(73)(15329) 5
117512115 (3)(5)(7)(73)(15331) 5
123871335 (3)(5)(7)(53)(22259) 5

n factorization of n A(n)
146130285 (3)(5)(7)(47)(29611) 5
151911165 (3)(5)(7)(83)(17431) 5
153518295 (3)(5)(7)(59)(24781) 4
164102505 (3)(5)(7)(61)(25621) 5
185820915 (3)(5)(7)(53)(33391) 5

746443728915 (3)(5)(31)(929)(1727939) 3
1147113361785 (3)(5)(29)(1741)(1514671) 2
2576062979535 (3)(5)(29)(2609)(2269829) 2

Table 3: Computed cyclotomic polynomials of order five with height ≤ 5.

Future work

Another unanswered problem we would like to investigate is:

Is A(np) ≥ A(n) for every integer n > 0 and for every prime p?
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