

Algorithms for Calculating Cyclotomic Polynomials

What are cyclotomic polynomials?

Definition 1. The n_{th} cyclotomic polynomial, $\Phi_n(z)$, is the monic polynomial in $\mathbb{Z}[z]$ whose roots are the $\phi(n)$ primitive roots of unity.

 $\Phi_n(z) = \prod_{d=0}^{n-1} (1-z^d)$

Here are some basic properties of cyclotomic polynomials:

Lemma 1. If n > 1, then the coefficients of $\Phi_n(z)$ are **palindromic**. That is, for $\Phi_n(z) = \sum_{k=0}^{\phi(n)} \alpha_k z^k$, it holds that $a_i = a_{\phi(n)-i}$. **Lemma 2.** If n is odd, then $\Phi_{2n}(z) = \Phi_n(-z)$. **Lemma 3.** If p is a prime that divides n, then $\Phi_{np}(z) = \Phi_n(z^p)$.

Here are the first nine cyclotomic polynomials:

 $\Phi_1(z) = z - 1$ $\Phi_4(z) = z^2 + 1$ $\Phi_7(z) = z^6 + z^5 + z^4 + z^3 + z^2 + z + 1$

 $\Phi_2(z) = z + 1$ $\Phi_5(z) = z^4 + z^3 + z^2 + z + 1$ $\Phi_8(z) = z^4 + 1$

Observe that the coefficients are all 1 or -1. This holds for the first 104 cyclotomic polynomials; however, $\Phi_{105}(z) = 1 + z + z^2 + z^4 - z^5 - z^6 - \frac{2}{2}z^7 - z^8 - z^9 + z^{12} + z^{13} + z^{14} + z^{15} + z^{16} + z^{17} - z^{20} - z^{22} - z^{24} - z^{26} - z^{$ $z^{28} + z^{31} + z^{32} + z^{33} + z^{34} + z^{35} + z^{36} - z^{39} - z^{40} - 2z^{41} - z^{42} - z^{43} + z^{46} + z^{47} + z^{48}$

We say that $\Phi_{105}(z)$ has height 2.

Definition 2. The **height** of $\Phi_n(z)$, A(n), is the maximum of the absolute values of the coefficients of $\Phi(n)$. That is, for $\Phi_n(z) = \sum_{k=0}^{\phi(n)} a_k z^k$, $A(n) = \max_{1 \le k \le \phi(n)} |a_k|$.

For cyclotomic polynomials $\Phi_n(z)$ that can be easily computed with most computer algebra systems, A(n)is typically small. In fact, for $n < 10^6$, $A(n) \le 60000$. One might guess that A(n) is bounded by n. Erdős, however, proved the following:

Theorem 1. (Erdõs) [3] For all c > 0, there exists n such that $A(n) > n^{c}$.

We aim is to answer the question: What is the smallest n such that A(n) is greater than n? n^2 ? n^3 ? ... As far as we know, no one has previously calculated $\Phi_n(z)$ with n > A(n). Here is what we have computed to date:

	Table 1:	Smallest <i>n</i> such that $A(n) > n^c$, for $1 \le c \le 4$
4	1880394945	6454099703601091156682644
3	416690995	8010318210512
2	43730115	3148
1	1181895	
С	$\min(n)$ for which $A(n) > n^c$	

To compute these results, we needed to develop faster algorithms to calculate $\Phi_n(z)$. We present two such algorithms in this poster.

By lemmas 2 and 3, we know that if we introduce repeated factors or powers of 2 into n, that it will not result in a cyclotomic polynomial $\Phi_n(z)$ of greater height; therefore, our algorithms are designed with squarefree, odd *n* in mind.

The sparse power series algorithm

The following identity is well-known:

Lemma 4. [2] For
$$n > 1$$
, $\Phi_n(z) = \prod_{d|n} (1 - z^d)^{\mu(\frac{n}{d})} = \left(\prod_{\mu(\frac{n}{d})=1} (1 - z^d)\right) \div \left(\prod_{\mu(\frac{n}{d})=-1} (1 - z^d)\right)$
where μ is the mobius function. ($\mu(n) = 1$ for squarefree n with an even number $\mu(n) = -1$ for squarefree n with an odd number of prime factors; $\mu(n) = 0$ for n in

For instance

$$P_{3.5.7}(z) = \frac{(1-z^{105})(1-z^3)(1-z^5)(1-z^7)}{(1-z^{35})(1-z^{21})(1-z^{15})(1-z)}$$

Given a power series $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $f \in \mathbb{Z}[[z]]$, we can retrieve the first *m* terms of the both the product $f(z) \cdot (1 - z^d)$ and quotient $\frac{f(z)}{1 - z^d}$ in $\mathcal{O}(m)$ operations in \mathbb{Z} . This is seen in the algorithm described hereafter:

Andrew Arnold (ada26@sfu.ca), Michael Monagan (mmonagan@cecm.sfu.ca) Centre for Experimental and Constructive Mathematics (CECM), Simon Fraser University

Input: $n = p_1 p_2 \cdots p_k$, a product of k distinct primes. **Output**: $a_0, a_1, \dots, a_{\frac{\phi(n)}{2}+1}$, the first half of the coefficients of $\Phi_n(z)$

 $M \leftarrow \frac{\phi(n)}{2} + 1, a(0) \leftarrow 1, \text{ for } 1 \le i \le M \text{ do } a(i) \leftarrow 0$ **for** d|n, d > 0 **do** if – has an even number of prime factors then

for k = 0 to M - d do $a_{M-k} \leftarrow a_{M-k} - a_{(M-k)-d}$

else for k = d to M do $a_k \leftarrow a_k + a_{k-d}$ (multiply by $1 - z^d$)

Algorithm 1: Computing $\Phi_n(z)$ as a quotient of sparse power series

We only need to calculate half the terms of $\Phi_n(z)$, as the coefficients are palindromic by lemma 1. The algorithm takes $\mathcal{O}(2^k n)$ arithmetic operations in \mathbb{Z} .

The "big prime" algorithm

Calculating cyclotomic polynomials of very large degree using algorithm 1 can bode problematic, as oftentimes $\Phi_n(z)$ will not fit in main memory. In such a case, there are a variety of approaches to calculate $\Phi_n(z)$.

One approach is to calculate $\Phi_n(z)$ modulo primes p_i sufficiently small that we can fit $\Phi_n(z)$ in memory and write the images to hard disk. We then use Chinese remaindering to reconstruct the coefficients of $\Phi_n(z)$ sequentially from the images of $\Phi_n(z)$ mod p_i . This minimizes the amount of computation we have to do on the hard disk.

For yet larger cyclotomic polynomials, we may not even be able to store the coefficients modulo a prime in memory. In which case we may be forced to write $\Phi_n(z)$ and our intermediate work to disk. This proves most costly, as the hard disk bottlenecks the algorithm. In such instances, we need a low-memory algorithm to calculate $\Phi_n(z)$. Our low-memory approach requires the following definition and lemma:

Definition 3. For notational convenience, we define Ψ_n

Let p be a prime such that $p \nmid m$, then Φ_m Lemma 5.

Given n = mp, our approach to compute $\Phi_n(z)$ is roughly as follows: We first calculate $\Phi_m(z)$ and $\Psi_m(z)$. We can very easily calculate $\Psi_m(z)$ in a manner similar to algorithm 1. We then multiply $\Phi_m(z^p)$ by the power series of $\frac{\Psi_m(z)}{1-z^m}$ in a "forgetful" manner.

If we write

$$\Phi_m(z) = b_0 + b_1 z + \ldots + b_{\phi(m)} z^{\phi(m)}$$
, and $\Psi_m(z) = c_0 + c_1 z + \ldots + c_{m-\phi(m)} z^{m-\phi(m)}$

then it follows from lemma 5 that

$$\Phi_n(z) = \left(\sum_{l=ip+j} b_i c_j \cdot z^l\right) \left(1 + z^m + z^{2m} + z^{3m} + \dots\right) = \sum_{l\equiv ip+j \mod m} b_i c_j \cdot z^l.$$

Thus, if we write $\Phi_n(z) = a_0 + a_1 z + \ldots + a_{\phi(n)} z^{\phi(n)}$, we get the recurrence:

$$a_l = a_{l-m} + \sum_{l=ip+j} k$$

Using this recursion we compute the coefficients of $\Phi_n(z)$ sequentially, while storing only *m* coefficients.

Input : $n = p_1 p_2 \cdots p_k$, a product of k distinct primes. $\bar{a}_0, \bar{a}_1, \ldots, \bar{a}_m$, an array Output : A , the height of $\Phi_n(z)$ $m \leftarrow p_1 p_2 \ldots p_{k-1}, A \leftarrow 0$	
$b_0, b_1, \ldots, b_{\phi(m)} \leftarrow \text{the coefficients of } \Phi_m(z),$	C ₀ ,
$\bar{a}_0, \bar{a}_1 \dots, \bar{a}_{m-1} \leftarrow 0, 0, \dots, 0$ $i \leftarrow 0, l \leftarrow 0$ while $i \leq \frac{\phi(n)}{2}$ do	
for $j = 0$ to $m - \phi(m)$ do $\begin{bmatrix} \bar{a}_{(i+j \mod m)} \leftarrow \bar{a}_{(i+j \mod m)} + b_l \cdot c_j, & \text{if } j < p_k \text{ ar} \\ l \leftarrow l+1, i \leftarrow i + p_k \\ \text{return } A \end{bmatrix}$	nd

Algorithm 2: A low-memory algorithm to obtain the height of $\Phi_n(z)$

We temporarily store the i_{th} coefficient of $\Phi_n(z)$, a_i , in the $(i \mod m)_{th}$ location in our array, $\bar{a}_i \mod m$. Algorithm 2 takes $\mathcal{O}\left(\left(\frac{n}{n_{e}}\right)^{2}\right)$ arithmetic operations in \mathbb{Z} . The space complexity is $\mathcal{O}\left(\frac{n}{n_{e}}\right)$. Clearly, the algorithm works best for n with a large prime divisor p_k . As such, we call it the "big prime" algorithm.

(divide by $1 - z^d$)

$$f(z) = \frac{1 - z^n}{\Phi_n(z)}.$$

$$f(z) = \frac{\Phi_m(z^p)}{\Phi_m(z)} = \Phi_m(z^p) \cdot \left(\Psi_m(z) \cdot \frac{1}{1 - z^m}\right).$$

 $b_i C_j$.

$$C_1, \ldots, C_{m-\phi(m)} \leftarrow \text{the coefficients of } \left(\frac{z^m - 1}{\Phi_m(z)}\right)$$

 $|\bar{a}_{(i+i \mod m)}| > A$ then $A \leftarrow |\bar{a}_{(i+i \mod m)}|$

Cyclotomic Polynomials of Large Height

We have computed a library of data on the heights and lengths of cyclotomic polynomials. This data is available at http://www.cecm.sfu.ca/~ada26/cyclotomic/. Table 2, below, shows $\Phi_n(z)$ of increasing height:

We are currently computing $\Phi_n(z)$, for $n = 99660932085 = 3 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \cdot 29 \cdot 37 \cdot 43 \cdot 53$, to 192-bit precision using algorithm 1. We expect it to have a greater height than that of any previously computed cyclotomic polynomial.

Definition 4. A polynomial is **flat** if it has height one. **Definition 5.** The order of a cyclotomic polynomial $\Phi_n(z)$ is the number of distinct odd prime factors that divide n.

A question we are currently researching is: Are there flat cyclotomic polynomials of order five? It holds that A(p) = 1 for all primes p and A(pq) = 1 for all primes p,q. There are also infinitely many flat cyclotomic polynomials of order three [1][4], and we have computed flat cyclotomic polynomials of order four $(\Phi_{3.5.29.1741}(z))$, is the first such example). To our knowledge, however, no one has yet found a flat cyclotomic polynomial of order five. We are using a two-pronged search: calculation of select examples of $\Phi_n(z)$ of order five, for which we expect A(n) to be small (typically for very large n), and an exhaustive computation of cyclotomic polynomials $\Phi_n(z)$ of order five, for small n. To date, we have calculated every cyclotomic polynomial $\Phi_n(z)$ of order five for squarefree, odd $n < 2 \cdot 10^8$. Here are the cyclotomic polynomials of smallest height that we have computed:

n	factorization of <i>n</i>	A(n)	n	factorization of <i>n</i>	A(n)	
48713385	(3)(5)(7)(47)(9871)	5	146130285	(3)(5)(7)(47)(29611)	5	
61944015	(3)(5)(7)(53)(11131)	5	151911165	(3)(5)(7)(83)(17431)	5	
76762245	(3)(5)(7)(59)(12391)	4	153518295	(3)(5)(7)(59)(24781)	4	
82041645	(3)(5)(7)(61)(12809)	5	164102505	(3)(5)(7)(61)(25621)	5	
97411965	(3)(5)(7)(47)(19739)	5	185820915	(3)(5)(7)(53)(33391)	5	
117496785	(3)(5)(7)(73)(15329)	5	746443728915	(3)(5)(31)(929)(1727939)	3	
117512115	(3)(5)(7)(73)(15331)	5	1147113361785	(3)(5)(29)(1741)(1514671)	2	
123871335	(3)(5)(7)(53)(22259)	5	2576062979535	(3)(5)(29)(2609)(2269829)	2	
Table 3: Computed cyclotomic polynomials of order five with height ≤ 5 .						

[4] Nathan Kaplan. Flat cyclotomic polynomials of order three. J. Number Theory, 127(1):118–126, 2007.

Computational Results

	n	A(n)		n	A(n)		
206	15	27		1181895	14102773		
265	65	59		1752465	14703509		
407	55	359		3949491	56938657		
1067	43	397		8070699	74989473		
1717	17	434		10163195	1376877780831		
2552	55	532		13441645	1475674234751		
2795	65	1182		15069565	1666495909761		
3278	45	31010		30489585	2201904353336		
7074	55	35111		37495115	2286541988726		
8864	45	44125		40324935	2699208408726		
9835	35	59815		43730115	862550638890874931		
n of <i>n</i> A(<i>n</i>)							
')(43)					31484567640915734941		
(12) 4233794440280272025							
.)(41)				8010318	82105128365570406901971		
)(43) 86711753206816303264095919005							
)(53) 111859370951526698803198257925							
)(41) 137565800042644454188531306886							
)(43) 192892314415997583551731009410							
(43)	(43) 6454099703601091156682644618152388897156						
)(53) 6707596266692301982360203066315311880							
: n such that $A(n) > A(m)$ for $m < n$.							

Flat cyclotomic polynomials

Future work

Is $A(np) \ge A(n)$ for every integer n > 0 and for every prime p?

[1] Gennady Bachman. Flat cyclotomic polynomials of order three. Bulletin of the London Mathemat-[2] D. M. Bloom. On the coefficients of the cyclotomic polynomials. *Amer. Math. Monthly*, 75:372–377,

[3] Paul Erdős and R.C. Vaughn. On the coefficients of the cyclotomic polynomial. Bull. Amer. Math.