Algorithms for Calculating Cyclotomic Polynomials

What are cyclotomic polynomials?

Definition 1. The $n_{t h}$ cyclotomic polynomial, $\Phi_{n}(z)$, is the monic polynomial in $\mathbb{Z}[z]$ whose roots

$$
\Phi_{n}(z)=\prod_{\substack{\left(d_{0}, 0 \\ \operatorname{sco}\left(d_{n}\right)=1\right.}}^{n-1}\left(1-z^{d}\right)
$$

Here are some basic properties of cyclotomic polynomials:
Lemma 1. If $n>1$, then the coefficients of $\Phi_{n}(z)$ are palindromic. That is, for $\Phi_{n}(z)=\sum_{k=0}^{\phi(n)} a_{k} z^{k}$, it olds that $a_{j}=a_{\phi(n)-1}$
emma 3. If p is a prime that divides n, then $\Phi_{n \rho}(z)=\Phi_{n}\left(z^{p}\right)$.
Here are the first nine cyclotomic polynomials:

$\Phi_{1}(z)=z-1$	$\Phi_{2}(z)=z+1$	
$\Phi_{4}(z)=z^{2}+1$	$\Phi_{3}(z)=z^{2}+z+1$	
$\Phi_{7}(z)=z^{6}+z^{5}+z^{4}+z^{3}+z^{2}+z+1$	$\Phi_{5}(z)=z^{4}+z^{3}+z^{2}+z+1$	$\Phi_{6}(z)=z^{4}+z^{2}+1$
$\Phi_{6}(z)=z^{4}+1$		

We say that $\Phi_{105}(z)$ has height 2 .

of $\Phi(n)$. That is, for $\Phi_{n}(z)=\sum_{k=0} a_{k} z^{k}, A(n)=\max _{1 \leq k \leqslant \phi(n)}\left|a_{k}\right|$
For cyclotomic polynomials $\Phi_{n}(z)$ that can be easily computed with most computer algebra systems, $A(n)$
is typically small. In fact, for $n<10^{6}, A(n) \leq 60000$. One might guess that $A(n)$ is bounded by n. Erdôs, is typically small. In fact, for n
however, proved the following

Theorem 1. (Erdös) [3] For all $c>0$, there exists n such that $A(n)>n$ We aim is to answer the question: What is the smallest n such that $A(n)$ is greater than n ? n^{2} ?
n^{3} ?A far as we know, no one has previously calculated $\Phi_{n}(z)$ with $n>A(n)$. Here is what we have
compted to computed to date:

$c \mid m i n(n)$ for which $A(n)>n^{c}$	1181895
1	43730115
2	416690995

6454099703601091156682644618152388897156
Table 1: Smallest n such that $A(n)>n^{c}$, for $1 \leq c \leq 4$
To compute these results, we needed to develop faster algorithms to calculate $\Phi_{n}(z)$. We present two such algorithms in this poster
By lemmas 2 and 3 , we know that if we introduce repeated factors or powers of 2 into n, that it will not result in a cyclotomic polynomial $\Phi_{n}(z)$ of greater height; therefore, our algorithms are designed with

```
The sparse power series algorithm
```

The following identity is well-known:
Lemma 4. [2] For $n>1, \Phi_{n}(z)=\prod_{d \| n}\left(1-z^{d}\right)^{\mu\left(\frac{n}{d}\right)}=\left(\prod_{\mu\left(\frac{d}{d}\right)=1}\left(1-z^{d}\right)\right) \div\left(\prod_{\mu\left(\frac{\sigma}{d}\right)=-1}\left(1-z^{d}\right)\right)$,
where μ is the mobius function. ($\mu(n)=1$ for squarefree n with an even number of prime factors;
$\mu(n)=-1$ for squarefree n with an odd number of prime factors; $\mu(n)=0$ for n not squarefree.) For instance
$\Phi_{3 \cdot 5 \cdot 7}(z)=\frac{\left(1-z^{105}\right)\left(1-z^{3}\right)\left(1-z^{5}\right)\left(1-z^{7}\right)}{\left(1-z^{35}\right)\left(1-z^{21}\right)\left(1-z^{15}\right)(1-z)}$
Given a power series $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, f \in \mathbb{Z}[[z]]$, we can retrieve the first m terms of the both the product $f(z) \cdot\left(1-z^{d}\right)$ and quotient $\frac{f(z)}{1-z^{d}}$ in $\mathcal{O}(m)$ operations in \mathbb{Z}. This is seen in the algorithm described product $f(z)$
hereatter:

Andrew Arnold (ada26@sfu.ca), Michael Monagan (mmonagan@cecm.sfu.ca) entre for Experimental and Constructive Mathematics (CECM), Simon Fraser University

Input: $n=p_{1} p_{2} \cdots p_{k}$, a product of k distinct primes. Output: $a_{0}, a_{1}, \cdots, a_{\frac{\phi(n)}{2}+1}$, the first half of the coefficients of $\Phi_{n}(z)$ $M \leftarrow \frac{\phi(n)}{2}+1, a(0) \leftarrow 1, \text { for } 1 \leq i \leq M \text { do } a(i) \leftarrow 0$ for $d \mid n, d>0$ do if $\frac{n}{d}$ has an even number of prime factors then for $k=0$ to $M-d$ do $a_{M-k} \leftarrow a_{M-k}-a_{(M-k)-d}$ (divide by $1-z^{d}$) else for $k=d$ to M do $a_{k} \leftarrow a_{k}+a_{k-d}$

Algorithm 1: Computing $\Phi_{n}(z)$ as a quotient of sparse power series
We only need to calculate half the terms of $\Phi_{n}(z)$, as the coefficients are palindromic by lemma 1 . The
algorithm takes $\mathcal{O}\left(2^{k} n\right)$ arithmetic operations in \mathbb{Z}.

The "big prime" algorithm

Calculating cyclotomic polynomials of very large degree using algorithm 1 can bode problematic, as
oftentimes $\Phi_{n}(z)$ will not fit in main memory. In such a case, there are a variety of approaches to calculate $\Phi_{n}(z)$.

One approach is to calculate $\Phi_{\text {}}(z)$ modulo primes p_{i} sufficiently small that we can fit $\Phi_{n}(z)$ in memory and write the images to hard disk. We then use Chinese remaindering to reconstruct the coefficients of $\Phi_{n}(z)$ sequentially from the images of $\Phi_{n}(z) \bmod p_{i}$. This minimizes the amount of computation we hav
to do on the hard disk. to do on he hardisk.
For yet larger cyclotomic polynomials, we may not even be able to store the coefficients modulo a prime
in memory. In which case we may be forced to write $\Phi_{n}(z)$ and our intermediate work to disk. This proves in memory. In which case we may be forced to write $\Phi_{n}(z)$ and our intermediate work to disk. This prove
most costly, as the hard disk bottlenecks the algorithm. In such instances, we need a low-memory most costly, as tue hard disk bottlenecks the algorithm. In such instances, we need a low-mem
algorithm to calculate $\Phi_{n}(z)$. Our low-memory approach requires the following definition and lemma:

$$
\begin{aligned}
& \text { Definition 3. For notational convenience, we define } \Psi_{n}(z)=\frac{1-z^{n}}{\Phi_{n}(z)} \\
& \text { Lemma 5. Let } p \text { be a prime such that } p \nmid m \text {, then } \Phi_{m p}(z)=\frac{\Phi_{m}\left(z^{p}\right)}{\Phi_{m}(z)}=\Phi_{m}\left(z^{p}\right) \cdot\left(\Psi_{m}(z) \cdot \frac{1}{1-z^{m}}\right)
\end{aligned}
$$

Given $n=m p$, our approach to compute $\Phi_{n}(z)$ is roughly as follows: We first calculate $\Phi_{m}(z)$ and $\Psi_{m}(z)$.

If we write
$\Phi_{m}(z)=b_{0}+b_{1} z+\ldots+b_{\phi(m)} z^{\phi(m)}$, and $\quad \Psi_{m}(z)=c_{0}+c_{1} z+\ldots+c_{m-\phi(m)} z^{m-\phi(m)}$
then it follows from lemma 5 that

$$
\Phi_{n}(z)=\left(\sum_{l=i p+j} b_{i} c_{j} \cdot z^{\prime}\right)\left(1+z^{m}+z^{2 m}+z^{3 m}+\ldots\right)=\sum_{l \equiv i p+j \bmod m} b_{i} c_{j} \cdot z
$$

Thus, if we write $\Phi_{n}(z)=a_{0}+a_{1} z+\ldots+a_{\phi(n)} z^{\phi(n)}$, we get the recurrence:

$$
a_{l}=a_{l-m}+\sum_{l=i p+j} b_{i} c_{j} .
$$

Using this recursion we compute the coefficients of $\Phi_{n}(z)$ sequentially, while storing only m coefficients.

Algorithm 2: A low-memory algorithm to obtain the height of $\Phi_{n}(z)$
We temporarily store the $i_{t \text { n }}$ coefficient of $\Phi_{n}(z), a_{i}$, in the $(i \bmod m)_{t h}$ location in our array, $\bar{a}_{i} \bmod m$. Algorithm 2 takes $\mathcal{O}\left(\left(\frac{n}{\rho_{x}}\right)^{2}\right)$ arithmetic operations in \mathbb{Z}. The space complexity is $\mathcal{O}\left(\frac{n}{p_{k}}\right)$. Clearly, the algorithm works best for n with a large prime divisor p_{k}. As such, we call it the "big prime" algorithm.

Computational Results
Cyclotomic Polynomials of Large Height
We have computed a library of data on the heights and lengths of cyclotomic polynomials. This data is
available at http://www. cecm. sfu. ca/~ada26/cyclotomic/. Table 2, below, shows $\Phi_{n}(z)$ of increasing

Table 2: n such that $A(n)>A(m)$ for $m<n$. We are currently computing $\Phi_{n}(z)$, for $n=99660932085=3 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \cdot 29 \cdot 37 \cdot 43 \cdot 53$, to 192 -b
precision using algorithm 1. We expect it to have a greater height than that of any previously computed cyclotomic polynomial.

Flat cyclotomic polynomials

Definition 4. A polynomial is flat if it has height one

Definition 5 . The order of a cyclotomic polynomial $\Phi_{n}(z)$ is the number of distinct odd prime
factors that divide n. A question we are currently researching is: Are there flat cyclotomic polynomials of order five?
It holds that $A(p)=1$ for all primes p and $A(p q)=1$ for all primes p, q. There are also inninitely many
flat cyclotomic polynomials of order three $[1][4]$, and we have computed flat cyclotomic polynomials of
 examples of $\Phi_{n}(z$) of order five, for which we expect $A(A)$ to to be small (typiacally for very lar of n, and and
an exhaustive computation of cyclotomic polynomials $\Phi_{n}(z)$ of order five, for small n. To date, we have an exhaustive computation of cyclotomic polynomials $\Phi_{n}(z)$ of order five, for small n. To date, we have
calculated every cyclotomic polynomial $\Phi_{n}(z)$ of order five for squarefree, odd $n<2 \cdot 10^{\circ}$. Here are the cyclotomic polynomials of smallest height that we have computed:

Table 3: Computed cyclotomic polynomials of order five with height ≤ 5

Future work

nother unanswered problem we would like to investigate is
Is $A(n p) \geq A(n)$ for every integer $n>0$ and for every prime p ?

References

1] Gennady Bachman. Flat cyclotomic polynomials of order three. Bulletin of the London Mathematical Society, 38(01):53-60, 2006.
[2] D. M 13] Paul Erdös and R.C. Vaughn. On the coefficients of the cyclotomic polynomial. Bull. Amer. Math.
Soc., 52:179-184. 1946 . 4] Nathan Kaplan. Flat cyclotomic polynomials of order three. J. Number Theory, 127(1):118-126,
2007.

