On the Density of Integers Bi-representable as the Sum of Two Cubes

Abstract

Denote by $\nu(x)$ the number of positive integers less than or equal to x that are representable in at least two ways as the sum of two positive cubes. We address the following question: find the least $\vartheta>0$ so that

$$
\nu(x) \ll x^{\vartheta+\varepsilon}
$$

The best known result is $\vartheta=\frac{4}{9}$. We provide computational evidence for the conjectured asymptotic bound of $\vartheta=\frac{2}{5}$.

Introduction

Consider the integers that are expressible as the sum of two cubes in more than one way. Similarly, one may consider integer solutions to the diophantine equation

$$
w^{3}+x^{3}=y^{3}+z^{3} .
$$

Inevitably all recountings of this story involve Hardy Ramanian and number 1729. And so we wish to get this out of the way directly. Hardy write in [2],

I remember going to see [Ramanujan] once when he was lying ill in Putney. I had ridden in taxi-cab No. 1729, and had remarked that the number seemed to me a rather dull one, and that I hoped that it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as a sum of two cubes in two different ways.'

Ramnujan's one solution gives infinitely many (though trivial) solutions to Eq. (1). There are many natural questions related to this equation, but our main concern is the question of the asymptotic number of integers that can be
written as the sum of two cubes in more than one way.

Definition Denote by $\nu(x)$ the number of positive integers less than or equal to x that are representable in at least two ways as the sum of two positive cubes Problem 1 Find the least $\vartheta>0$ so that
$\nu(x) \ll x^{9+\varepsilon}$.

The symbol "<" is called the Vinogradov symbol, and is used insted "Big O " notation
There are some notable attempts at Problem 1, but before exploring the known results, let us describe probabilistically what is expected.

Probably

For the purpose of finding a probable asymptotic value, let us assume that the events of n being a sum of two cubes once, as well as, twice are independen (though the value is most certainly not independent). Relying on this indepe Note that the values n such that $n=x^{3}+y^{3}$, with $x^{3}+y^{3}<N$ define region in the plane. Using information from this region, we gain the following expected asymptotic value for $\nu(x)$.

Assuming a Poisson distribution we have that

$$
\nu(x) \ll x^{1 / 3}
$$

That is, assuming a Poisson distribution, $\vartheta=\frac{1}{3}$. But as we stated at the beginning of this section, assuming independence is not very reasonable, and so
$\vartheta=\frac{1}{3}$ is most likely not true (as we see in the next section), though it gives us a rough estimate for a starting point.

Figure 3: The $\frac{2}{5}-$ comet and $\frac{4}{9}-$ comet.

Figure 1: Plot of n versus $\frac{\log \max \left|K_{n}\right|}{\log \left|K_{n}\right|}$

Figure 2: Plot of $\log \left|K_{n}\right|$ versus $\log \max \left|K_{n}\right|$.

Two Conjectures

A very strong conjecture appears in [3], but seems to have originated with Franke, Manin, and Tschinkel [1].

Conjecture 1. For any $\varepsilon>0$, we have $\nu(x) \ll x^{1 / 3+\varepsilon}$

The second conjecture seems to have originated with Stefan Burr of CUNY sometime around October of 2002.

Conjecture 2. For any $\varepsilon>0$, we have $\nu(x) \ll x^{2 / 5+}$

Computational Evidence

Let K_{n} be the set of integers which are bi-representable as the sum of two cubes where each summand is bounded by n^{3}. In set notation
$K_{n}=\left\{k \in \mathbb{N}: \exists x_{i}, x_{1}^{3}+x_{2}^{3}=x_{3}^{3}+x_{4}^{3}=k, x_{1}<x_{2}, x_{1} \neq x_{3}, 0<x_{i} \leq n\right\}$.
Using this notation we have the equivalence $\nu(x)=\left|K_{x}\right|$
In order to figure out what may be the actual bound of $\nu(x)$, we computed $\left|K_{n}\right|, n=100 i(i=1,2,3, \ldots 250)$. With this notation $\left|K_{25000}\right|$ is the number of integers bi-representable as the sum of two cubes with summands less than or equal to $25000^{3}=1.5625 \cdot 10^{1}$
Note that the value of ϑ may be found using simple techniques to be

$\frac{\log \max \left|K_{n}\right|}{\log \left|K_{n}\right|} \ll \vartheta$.

Figure 1 includes a plot of this relationship.
Included in Figure 2 are the lines $\vartheta=\frac{4}{9}, \frac{2}{5}, \frac{1}{3}$, corresponding to HeathIncluded in
Brown's known result, Burr's conjecture, and the conjecture of Franke, Manin, and Tschinkel [1]. From this picture, the conjecture of $\vartheta=\frac{2}{5}$ seems to be very convincing.
Figure 2
Figure 2 shows $\log \left|K_{n}\right|$ versus $\log \max \left|K_{n}\right|$. The middle line corresponds to $\vartheta=\frac{2}{5}$ and the top line to $\vartheta=\frac{4}{4}$. In this plot the data seems to be bending
towards the middle line; that is, the line corresponding to $\vartheta=\frac{2}{2}$. towards the middie ine; that is, the line corresponding to $\hat{y}=\frac{2}{5}$.
To see if this is indeed the case, we inspect the difference betwen the data and the line corresponding to $\vartheta=\frac{2}{5}$. In order to see how good a bound the
current known bound of $\vartheta=\frac{4}{4}$ is, we also plot the difference between this lie current known bound of $\vartheta=\frac{4}{9}$ is, we also plot the difference between this line and the data. These relationships are reflected in Figure 3.
Since the information of Figure 3 seems to be reflected by two groups that ${ }^{1}-$-comet, and the bottom one the them as such. We will call the top comet the $\frac{9}{9}$. f met, and the bottom one the $\frac{2}{5}$-comet, as the top comet corresponds to the號 bottom to the line corresponding to $\vartheta=\frac{2}{5}$.
ense. Their destinations tell us whether they reflect or not. The trail of the $\frac{2}{5}$-comet seems to give us a probable destination of he axis or some other constant. What is maybe more interesting is that the $\frac{4}{9}$-comet seems to have come down and at the end of our calculation is starting
to oo out toward infinity. This tells us that the bound $\vartheta=\frac{4}{4}$ is almost certainly not sharp, and that $\vartheta=\frac{2}{5}$ is maybe the correct asymptotic bound.

References

