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{1, 2} is discarded  because  adding  it would create  a cycle.
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New Features of the GraphTheory Package
Animations for Prim’s and Kruskal’s Algorithms
Below we show some key frames from the commands:
> G:=AntiPrismGraph(5,2):
> G:=AssignEdgeWeights(G,0..99):
> AnimateMinimalSpanningTree(G);
The code, which consists of a few `HighlightEdges` commands added 
to `KruskalsAlgorithm` and `PrimsAlgorithm`, generates a pleasing and 
instructive animation of these two fundamental greedy algorithms.

RandomRegularGraph
The RandomGraphs package contains rou-
tines for generating random graphs, trees, di-
graphs, networks, tournaments and regular 
graphs.  For regular graphs on n vertices with 
each vertex of degree d, we have imple-
mented Steger and Wormald’s [1] algorithm. 
Quoted from their paper, the algorithm is as 
follows:

1. Start with nd points {1,2,...,nd} (nd 
even) in n groups.  Set U={1,2,...,nd}.  
(U denotes the set of unpaired 
points.)

2. Repeat the following until no suitable 
pair can be found:  Choose two ran-
dom points i and j in U, and if they 
are suitable, pair i with j and delete i 
and j from U.

3. Create a graph G with edge from ver-
tex r to vertex s if and only if there is a pair containing points in the r’th and s’th 

groups.  If G is d-regular, output it, other-
wise return to Step 1.

Here, suitable means the points “lie in dif-
ferent groups and no currently existing pair 

contains points in the same two 
groups”.
The running time for the algorithm is  
O(n d^2 + d^4) which makes it effi-
cient for 3 and 4 regular graphs.  The 
authors prove randomness for small d.  
We get randomness for large d by tak-
ing the complement.
The algorithm can get stuck inserting 

the last few edges as illustrated in the fig-
ure.  This is the reason for the d^2 instead 
of d in the running time.

Special Graphs with Special Properties
Some of the larger graphs with properties that are difficult to detect as well as con-
venient drawings have them hardcoded into the graph.
Here we use the `SoccerBallGraph` as an example.

A Hamilton Cycle
Finding a hamilton cycle is NP-hard.  `IsHamiltonian` is a simple back tracking algo-
rithm.  It comes to a vertex along an edge and then looks for an unvisited neighbour.  
If it cannot find one, it backtracks.  The SoccerBallGraph has 60 vertices and is 3 
regular,  this means that `IsHamiltonian` is O(2^60) which is not doable unless there 
are lots of cycles and we get lucky.
The way we found the hamilton cycle shown in the figure is as follows.  We gener-
ated a 3 edge colouring of the 
graph at random, then tested to 
see if deleting edges of one col-
our left one cycle.  After a few 
tries we got lucky and found one.

A Planar Drawing
Having found a Hamilton cycle, 
the need to display it properly mo-
tivated us to find a planar draw-
ing.  To avoid some extra labour 
we used the existing particle-
spring drawing model to generate 
the vertex positions.  By deleting 
the edges around one of the pen-
tagonal faces of the graph (the 
outer face in the figure) the verti-
ces of that face repelled each 
other toward the outside of the drawing.  Projecting the result into the plane gives a 
planar drawing.  This is now the default drawing for the `SoccerBallGraph`.
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Levi Graph

A 3-regular graph on 10 vertices

(top) 
Adjacency Matrices for G1, G2, re-
spectively
(bottom)
All Pairs Distance Matrices for G1, 
G2, respectively
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Graph Isomorphism
Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected, unweighted graphs, where Vi

is the set of vertices and Ei is the set of edges. The problem of Graph Isomorphism
is to determine if there exists a bijection φ : V1 → V2 such that for every u, v ∈ V1,
{u, v} ∈ E1 iff {φ(u), φ(v)} ∈ E2. If G1, G2 are isomorphic, then we should output the
mapping φ.

The Graph Isomorphism problem is believed to be neither NP-complete nor in P.
There is no known polynomial time algorithm that solves the general problem, there-
fore, we use certain heuristics such as degree sequences, neighbourhood information,
and distances between vertices to prune the search.

All Pairs Distance Matrix
Obviously, if the two graphs have different numbers of vertices or edges, or different
degree sequences, they can’t be isomorphic. Next, we compute the All Pair Distance
(APD) matrix, whose entry mij is the distance between vertices i, j.
if we sort the integers in each row of the APD matrix, then the rows corresponding
to matching vertices must be the same. To test if two rows have the same entries
(distances) efficiently, we compute a hash value for them. In the backtracking algorithm
we match vertices with the same hash value, using neighbour degrees and distances
to prune the search. If we can’t match any vertices, then the graphs must be non-
isomorphic.

Shown is a prism graph (G1) with 6 vertices, and G2, a random permutation of the
vertices of G1, and their adjacency matrices and their APD matrices.

We have implemented the computation of the APD matrix in C. It costs O(n3). We
compute the characteristic polynomial c(λ) modulo a prime p at two random points α
and β in Zp which also is O(n3). As an example, if G is the prism graph on 200 vertices
(it has 300 edges) we can find an random isomorphism in just over 1 second. Of this,
about 20% is spent computing c(α) and c(β) and 5% is computing the APD matrix and
over 80% is backtracking.


