New Features of the GraphTheory Package

Contributors: AI Erickson, Mohammad Ghebleh, Simon Lo, Michael Monagan

Animations for Prim's and Kruskal's Algorithms
Below we show some key frames from the commands:
$>\mathrm{G}:=$ AntiPrismGraph $(5,2)$:
$>\mathrm{G}:=$ AssignEdgeWeights(G,0..99):
> AnimateMinimalSpanningTree(G)
The code, which consists of a few `HighlightEdges` commands added to `KruskalsAlgorithm` and `PrimsAlgorithm`, generates a pleasing and instructive animation of these two fundamental greedy algorithms.

RandomRegularGraph

The RandomGraphs package contains routines for generating random graphs, trees, digraphs, networks, tournaments and regular graphs. For regular graphs on n vertices with each vertex of degree d, we have implemented Steger and Wormald's [1] algorithm. Quoted from their paper, the algorithm is as follows:

1. Start with nd points $\{1,2, \ldots$, nd $\}$ (nd even) in n groups. Set $U=\{1,2, \ldots, n d\}$ (U denotes the set of unpaired points.)
2. Repeat the following until no suitable pair can be found: Choose two random points i and j in U, and if they are suitable, pair i with j and delete i and j from U.
3. Create a graph G with edge from vertex r to vertex s if and only if there is a pair containing points in the r 'th and s^{\prime} th groups. If G is d-regular, output it, other wise return to Step 1.

A 3-regular graph on 10 vertices

Here, suitable means the points "lie in different groups and no currently existing pair contains points in the same two groups".
The running time for the algorithm is $\mathrm{O}\left(\mathrm{n} \mathrm{d}^{\wedge} 2+\mathrm{d}^{\wedge} 4\right)$ which makes it efficient for 3 and 4 regular graphs. The authors prove randomness for small d. We get randomness for large d by taking the complement
The algorithm can get stuck inserting the last few edges as illustrated in the fig ure. This is the reason for the $d^{\wedge} 2$ instead of d in the running time.

Graph Isomorphism
Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two undirected, unweighted graphs, where V_{i} is the set of vertices and E_{i} is the set of edges. The problem of Graph Isomorphism is to determine if there exists a bijection $\phi: V_{1} \rightarrow V_{2}$ such that for every $u, v \in V_{1}$, $\{u, v\} \in E_{1}$ iff $\{\phi(u), \phi(v)\} \in E_{2}$. If G_{1}, G_{2} are isomorphic, then we should output the mapping ϕ.

The Graph Isomorphism problem is believed to be neither NP-complete nor in P. There is no known polynomial time algorithm that solves the general problem, therefore, we use certain heuristics such as degree sequences, neighbourhood information, and distances between vertices to prune the search.

All Pairs Distance Matrix

Obviously, if the two graphs have different numbers of vertices or edges, or different degree sequences, they can't be isomorphic. Next, we compute the All Pair Distance (APD) matrix, whose entry $m_{i j}$ is the distance between vertices i, j. Observation: If we sort the integers in each row of the APD matrix, then the rows corresponding to matching vertices must be the same. To test if wo rows have the same entries (distances) efficiently, we compute a hash value for them. In the backtracking algorithm we match vertices with the same hash value, using neighbour degrees and distances to prune the search. If we can't match any vertices, then the graphs must be nonsomorphic.
Shown is a prism graph (G1) with 6 vertices, and G2, a random permutation of the vertices of G1, and their adjacency matrices and their APD matrices.

We have implemented the computation of the APD matrix in C. It costs $\mathrm{O}\left(n^{3}\right)$. We compute the characteristic polynomial $c(\lambda)$ modulo a prime p at two random points α and β in \mathbb{Z}_{p} which also is $\mathrm{O}\left(n^{3}\right)$. As an example, if G is the prism graph on 200 vertices (it has 300 edges) we can find an random isomorphism in just over 1 second. Of this, about 20% is spent computing $c(\alpha)$ and $c(\beta)$ and 5% is computing the APD matrix and over 80% is backtracking.

G1

$\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$
$\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}$

| 1 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$| \begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1\end{array}$

$\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1\end{array}, \quad \begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1\end{array}$
$\left.\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 1\end{array} \right\rvert\, \begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0\end{array}$
$\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0\end{array}\right]\left[\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 0\end{array}\right.$
$\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 2 & 2\end{array}\right]\left[\begin{array}{llllll}0 & 1 & 2 & 1 & 2 & 1\end{array}\right.$
$\left[\begin{array}{llllll}1 & 0 & 1 & 2 & 1 & 2 \\ 1 & 1 & 0 & 2 & 2 & 1\end{array}\left|\begin{array}{llllll}1 & 0 & 1 & 2 & 1 & 2\end{array}\right|\right.$
$\left.\begin{array}{llllll}1 & 1 & 0 & 2 & 2 & 1\end{array} \right\rvert\, \begin{array}{llllll}2 & 1 & 0 & 2 & 1 & 1\end{array}$
$\begin{array}{llllll}1 & 2 & 2 & 0 & 1 & 1\end{array}, \quad \begin{array}{llllll}1 & 2 & 2 & 0 & 1 & 1\end{array}$
$\left.\begin{array}{llllll}2 & 1 & 2 & 1 & 0 & 1\end{array} \right\rvert\, \begin{array}{llllll}2 & 1 & 1 & 1 & 0 & 2\end{array}$
$\left[\begin{array}{llllll}2 & 2 & 1 & 1 & 1 & 0\end{array}\right]\left[\begin{array}{llllll}1 & 2 & 1 & 1 & 2 & 0\end{array}\right.$
(top)
Adjacency Matrices for G1, G2, re spectively
(bottom)
All Pairs Distance Matrices for G1 G2, respectively

