
1

5

4

6

3

2

(5,1)

(2,3)

(2,1)

(4,2)

(3,1)
(1,1)

(1,2)
(2,2)

(5,3)

(5,2)

(3,3)
(1,3)

(3,2)

(4,1)

(4,3)

Torus Grid Graph

{1,4}

{3,4}

{1,2}

{2,5}

{2,4}

{2,3}

{1,5}

{4,5}

{1,3}

{3,5}

Kneser Graph

Considered and discarded, would create a cycle

40
3

0

91

8

35

Cheapest edge

36

In spanning tree

64

52

50

6

1

67

2

82

7

5

5

35

94

91

77

0

4

9

76

Not yet considered

0

50

80

2

Consider the cheapest edge, {1, 3}. with weight 0

Considered and discarded, would create a cycle

40
3

0

91

8

35

Cheapest edge

36

In spanning tree

64

52

50

6

1

67

2

82

7

5

5

35

94

91

77

0

4

9

76

Not yet considered

0

50

80

2

{1, 2} is discarded because adding it would create a cycle.

8

1

5

40

50

5

The final Minimal Spanning Tree has total weight 243

0

4

76 2

3

9

7

2

6

0

35

35 0

Considered and discarded, would create a cycle

40
3

0

91

8

35

Cheapest edge

36

In spanning tree

64

52

50

6

1

67

2

82

7

5

5

35

94

91

77

0

4

9

76

Not yet considered

0

50

80

2

Consider the cheapest edge, {8, 9}. with weight 76

New Features of the GraphTheory Package
Animations for Prim’s and Kruskal’s Algorithms
Below we show some key frames from the commands:
> G:=AntiPrismGraph(5,2):
> G:=AssignEdgeWeights(G,0..99):
> AnimateMinimalSpanningTree(G);
The code, which consists of a few `HighlightEdges` commands added
to `KruskalsAlgorithm` and `PrimsAlgorithm`, generates a pleasing and
instructive animation of these two fundamental greedy algorithms.

RandomRegularGraph
The RandomGraphs package contains rou-
tines for generating random graphs, trees, di-
graphs, networks, tournaments and regular
graphs. For regular graphs on n vertices with
each vertex of degree d, we have imple-
mented Steger and Wormald’s [1] algorithm.
Quoted from their paper, the algorithm is as
follows:

1. Start with nd points {1,2,...,nd} (nd
even) in n groups. Set U={1,2,...,nd}.
(U denotes the set of unpaired
points.)

2. Repeat the following until no suitable
pair can be found: Choose two ran-
dom points i and j in U, and if they
are suitable, pair i with j and delete i
and j from U.

3. Create a graph G with edge from ver-
tex r to vertex s if and only if there is a pair containing points in the r’th and s’th

groups. If G is d-regular, output it, other-
wise return to Step 1.

Here, suitable means the points “lie in dif-
ferent groups and no currently existing pair

contains points in the same two
groups”.
The running time for the algorithm is
O(n d^2 + d^4) which makes it effi-
cient for 3 and 4 regular graphs. The
authors prove randomness for small d.
We get randomness for large d by tak-
ing the complement.
The algorithm can get stuck inserting

the last few edges as illustrated in the fig-
ure. This is the reason for the d^2 instead
of d in the running time.

Special Graphs with Special Properties
Some of the larger graphs with properties that are difficult to detect as well as con-
venient drawings have them hardcoded into the graph.
Here we use the `SoccerBallGraph` as an example.

A Hamilton Cycle
Finding a hamilton cycle is NP-hard. `IsHamiltonian` is a simple back tracking algo-
rithm. It comes to a vertex along an edge and then looks for an unvisited neighbour.
If it cannot find one, it backtracks. The SoccerBallGraph has 60 vertices and is 3
regular, this means that `IsHamiltonian` is O(2^60) which is not doable unless there
are lots of cycles and we get lucky.
The way we found the hamilton cycle shown in the figure is as follows. We gener-
ated a 3 edge colouring of the
graph at random, then tested to
see if deleting edges of one col-
our left one cycle. After a few
tries we got lucky and found one.

A Planar Drawing
Having found a Hamilton cycle,
the need to display it properly mo-
tivated us to find a planar draw-
ing. To avoid some extra labour
we used the existing particle-
spring drawing model to generate
the vertex positions. By deleting
the edges around one of the pen-
tagonal faces of the graph (the
outer face in the figure) the verti-
ces of that face repelled each
other toward the outside of the drawing. Projecting the result into the plane gives a
planar drawing. This is now the default drawing for the `SoccerBallGraph`.

2

15

8

7

5

25

3

17

10

16

11
12

6

19

27

23

21

20

1

26

1324

22

14

18

4

928

Flower Snark

8

1

5

10

6

7

2

4

11

9

3

Grotzsch Graph

9

4

14

27

21

16

12

30 519

29 20

17

25

28

3

23

18

1

7

22
26

15

2

811

10

613

24

Double Star Snark

0000

1100

1110

1101

1111

1001

0010

0110

0111

0001

0011

0100

1010

0101

1011

1000

Clebsch Graph

39

18
41

23

28

19

40

1

11

33

7

45

34

43

25

14

36

42 37

10

13

22
8 6

15

5

4

20

26

9

29

16

32

3

46

24

44

17

35

2

38

21

31
27

12

30

GrindbergGraph

19

9

13

2

11

12

1

5

18

15

4

8

14

17

6

20

16

3

7

10

Desargues Graph

13

21

23

24

6

4 3

10

15

22

18

37

8

7

25

32

36

28

16

229

9

1

40

31

11

34

20

33

30

35

519

12

39

17

26

38

14

27

Goldberg Snark

7

4

10

6

2

9

1

5

3

8

6 groups and 3 points. The algorithm is ‘stuck’.

9

4

14

27

21

16

12

30

5

19

29

20

17

25

28 3

23

18

1

7

22

26

15

2

8

11

10

6

13

24

Levi Graph

A 3-regular graph on 10 vertices

(top)
Adjacency Matrices for G1, G2, re-
spectively
(bottom)
All Pairs Distance Matrices for G1,
G2, respectively

1

5

4

6

3 2

(1)

(2)

0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1

1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

,

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 0 1 1

1 0 0 0 1 1

0 1 1 1 0 0

1 0 1 1 0 0

0 1 1 1 2 2

1 0 1 2 1 2

1 1 0 2 2 1

1 2 2 0 1 1

2 1 2 1 0 1

2 2 1 1 1 0

,

0 1 2 1 2 1

1 0 1 2 1 2

2 1 0 2 1 1

1 2 2 0 1 1

2 1 1 1 0 2

1 2 1 1 2 0

G1

G2

4

2

6

3

9

10

1

7

8

5

Petersen Graph

30

17

7

14

2

13

132

28

6

8

18

29

5

25

15

3

10

26

11

16

27

9

23

24

31

12

19

20

22

4

21

Dyck Graph

References:
1. Steger, A. and Wormald, N. C.
 Generating random regular graphs quickly.
 Combin. Probab. Comput. 8 (1999), no. 4, 377--396.

Contributors: Al Erickson, Mohammad Ghebleh, Simon Lo, Michael Monagan

29

10

18

11

47

3

15

26

41

35
28

14

22

50

38

25

20

19

12

49

24

33

8

42

5

23

27

13

34

4

36

43

17

1

6

2

46

21

44

39

7

31

32 30

37

9

40

16

48

45

Szekeres Snark

Graph Isomorphism
Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected, unweighted graphs, where Vi

is the set of vertices and Ei is the set of edges. The problem of Graph Isomorphism
is to determine if there exists a bijection φ : V1 → V2 such that for every u, v ∈ V1,
{u, v} ∈ E1 iff {φ(u), φ(v)} ∈ E2. If G1, G2 are isomorphic, then we should output the
mapping φ.

The Graph Isomorphism problem is believed to be neither NP-complete nor in P.
There is no known polynomial time algorithm that solves the general problem, there-
fore, we use certain heuristics such as degree sequences, neighbourhood information,
and distances between vertices to prune the search.

All Pairs Distance Matrix
Obviously, if the two graphs have different numbers of vertices or edges, or different
degree sequences, they can’t be isomorphic. Next, we compute the All Pair Distance
(APD) matrix, whose entry mij is the distance between vertices i, j.
if we sort the integers in each row of the APD matrix, then the rows corresponding
to matching vertices must be the same. To test if two rows have the same entries
(distances) efficiently, we compute a hash value for them. In the backtracking algorithm
we match vertices with the same hash value, using neighbour degrees and distances
to prune the search. If we can’t match any vertices, then the graphs must be non-
isomorphic.

Shown is a prism graph (G1) with 6 vertices, and G2, a random permutation of the
vertices of G1, and their adjacency matrices and their APD matrices.

We have implemented the computation of the APD matrix in C. It costs O(n3). We
compute the characteristic polynomial c(λ) modulo a prime p at two random points α
and β in Zp which also is O(n3). As an example, if G is the prism graph on 200 vertices
(it has 300 edges) we can find an random isomorphism in just over 1 second. Of this,
about 20% is spent computing c(α) and c(β) and 5% is computing the APD matrix and
over 80% is backtracking.

