Kseniya Garaschuk, Petr Lisoněk

MITACS

One nice property of the trace function
Let $\mathbb{F}_{2^{*}}^{*}:=\mathbb{F}_{2^{m}} \backslash\{0\}$ and let $T_{T}: \mathbb{F}_{2^{m}} \rightarrow \mathbb{F}_{2}$ denote the trace mapping given by:

$$
\operatorname{Tr}(x)=\sum_{i=0}^{2^{m-1}} x^{2^{i}}=x+x^{2}+\cdots+x^{2^{m-1}} .
$$

Lemma 1 (KG-PL, 2007). Let $m>1$ and let k be such that $\operatorname{gcd}\left(2^{k}-1,2^{m}-1\right)=1$. Then for each $a \in \mathbb{F}_{2 m}$ we have $\operatorname{Tr}\left(a^{1 /\left(2^{k}-1\right)}\right)=0$ if and only if $a=t^{2^{2}}+t^{2^{k}-1}$ for some $t \in \mathbb{F}_{2^{m}}$

Kloosterman sums divisible by 3
Definition 1. The Kloosterman map is the mapping $K: \mathbb{F}_{2^{m}} \rightarrow \mathbb{Z}$ defined by

$$
K(a):=\sum_{x \in \mathbb{F}_{z s}^{*}}(-1)^{\operatorname{Tr}\left(x^{-1}+a x\right)} .
$$

Theorem 1 (KG-PL, 2007). Let $m \geq 3$ be odd, and let $a \in \mathbb{F}_{2^{m} \text {. Then }} K(a)$ is divisible by 3 if
and only if $a=t^{4}+t^{3}$ for some $t \in \mathbb{F}_{2 m}$.
Proof. Let $t \in \mathbb{F}_{2^{m}}, t \notin\{0,1\}$, and consider the elliptic curve

$$
\mathcal{E}_{t}: y^{2}+x y=x^{3}+a_{2} x^{2}+\left(t^{8}+t^{6}\right),
$$

where

$$
a_{2}= \begin{cases}0 & \text { if } \operatorname{Tr}(t)=0, \\ 1 & \text { if } \operatorname{Tr}(t)=1 .\end{cases}
$$

" $\Leftarrow "$ (Proved first by Helleseth and Zinoviev, 1999.)

- Using (Lachaud and Wolfmann, 1990) we get

$$
\# \mathcal{E}_{t}= \begin{cases}2^{m}+1+K\left(t^{4}+t^{3}\right) & \text { if } \operatorname{Tr}(t)=0, \\ 2^{m}+1-K\left(t^{4}+t^{3}\right) & \text { if } \operatorname{Tr}(t)=1\end{cases}
$$

- The order of $\left(t^{2}+t: t^{4}+t^{3}: 1\right)$ in \mathcal{E}_{t} is 6 , hence $6 \mid \# \mathcal{E}_{t}$.
- Since $3 \mid\left(2^{m}+1\right)$, we get $3 \mid K\left(t^{4}+t^{3}\right)$

" \Rightarrow " ... in fact " \Leftrightarrow "

- Charpin, Helleseth and Zinoviev (2007) showed that $3 \mid K(a) \Leftrightarrow \operatorname{Tr}\left(a^{1 / 3}\right)=0$ - Set $k=2$ in $\operatorname{Tr}\left(a^{1 /\left(2^{k}-1\right)}\right)=0 \Leftrightarrow a=t^{2^{k}}+t^{2^{k}-1}$

Counting Coset Leaders for the Melas code

Definition 2. H is called a parity check matrix for a linear code C if $x \in C \Longleftrightarrow H x^{T}=0$ $H x^{T}$ is the syndrome of x.

Note that $\mathbb{F}_{2^{m}} \simeq \mathbb{F}_{2}^{m}$, and let α a primitive element of $\mathbb{F}_{2^{m}}$, then the standard parity check matrix of the Melas code \mathcal{M}_{m} is

$$
\mathcal{H}_{M}=\left(\begin{array}{ccccc}
\alpha & \ldots & \alpha^{i} & \ldots & \alpha^{2^{m}-1} \\
\alpha^{-1} & \ldots & \alpha^{-i} & \ldots & \alpha^{-\left(2^{m}-1\right)}
\end{array}\right) .
$$

Our goal: find the number of coset leaders for a coset of \mathcal{M}_{m} of weight 3 corresponding to a given syndrome $(a, b)^{T} \in \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$ produced by \mathcal{H}_{M}.
If $a \neq 0$, assume w.l.o.g. that $a=1$ and we'll be led to counting the number of solutions to the if $a \neq 0$, assume w.i.o.g. that $a=1$ and
following system of equations over $\mathbb{F}_{2 m}^{*}$:

$$
\left\{\begin{array}{c}
u+v+w=1 \tag{*}\\
u^{-1}+v^{-1}+w^{-1}=r
\end{array}\right.
$$

where $r \in \mathbb{F}_{2^{m}}$ is a fixed constant.
Theorem 2 (KG-PL, 2007). Let $r \in \mathbb{F}_{2^{m}} \backslash\{0,1\}$. The number of solutions over $\mathbb{F}_{2^{m}}^{*}$ of $\left(^{*}\right)$ is an integer T such that

- $T \in\left[2^{m}+1-2^{m / 2+1}-6,2^{m}+1+2^{m / 2+1}-6\right]$
- 6 divides T.

Conversely, each T satisfying these two conditions occurs as the number of solutions for at least one $r \in \mathbb{F}_{2^{m}} \backslash\{0,1\}$.

Idea for the proof. We eliminate w and homogenize as $u=U / Z, v=V / Z$. Next we apply the substitution

$$
\left\{\begin{array}{l}
r=1+\frac{1}{t}, \\
U=\frac{1}{t} x+(t+1) z, \\
V=\frac{1}{t^{2}}(y+s x)+\left(t^{2}+t\right) z \\
Z=\frac{t+1}{t^{2}} x+(t+1) z
\end{array}\right.
$$

Note: $r \in \mathbb{F}_{2^{m}} \backslash\{0,1\}$ implies $t \in \mathbb{F}_{2^{m}} \backslash\{0,1\}$.
We obtain the same curve \mathcal{E}_{t} as before!
Counting the points. A lot of technical calculations show that exactly 6 points on \mathcal{E}_{t} do not produce a solution (u, v, w), thus the number of solutions to $\left.{ }^{*}\right)$ is $\# \mathcal{E}_{t}-6$.
The assumption $r \neq 1$ forces u, v, w to be distinct in any solution (u, v, w) to (*). Thus the number of solutions is divisible by $3!=6$ for each $r \notin\{0,1\}$ and then so is $\# \mathcal{E}$.
By the Hasse Theorem for each $r \in \mathbb{F}_{2^{m}} \backslash\{0,1\}$ the number of solutions to (*) is in

$$
\left[2^{m}+1-2^{m / 2+1}-6,2^{m}+1+2^{m / 2+1}-6\right] \cap 6 \mathbb{Z} .
$$

The proof in the other direction relies heavily on Lachaud and Wolfmann resuls.
Theorem 3 (KG-PL, 2007). Let $N(k)$ denote the number of those $r \in \mathbb{F}_{2^{m}} \backslash\{0,1\}$ for which the number of solutions to (") is equal to k. Then for each $l \in \mathbb{N}$ we have $N\left(2^{m}-5+l\right)=N\left(2^{m}-5-l\right)$ hat is, the values $N(k)$ are symmetric about $k=2^{m}-5$
Special cases. Cases $a=0$ or $r \in\{0,1\}$ are easily doable but not interesting.

Applications in statistical experimental designs

Caps with many free pairs of point

- A cap in $\operatorname{PG}(n, 2)$ is a set C of points such that no three of them are collinear.

Points of C are columns of the parity check matrix H_{C} for a code of minimum distance 4

- We say that $\{s, t\} \subset C$ is a free pair of points if $\{s, t\}$ is not contained in any coplanar quadruple of C.

Caps in statistics. In experimental design terminology caps and free pair of points are called frac tional factorial designs and clear two-factor interactions, respectively. Given a coplanar quadruple of points in a cap, say $\{a, b, c, d\}$, in the analysis of an experiment it is impossible to distinguish between the two-factor interaction of $\{a, b\}$ and the two-factor interaction of $\{c, d\}$ and hence impossible to say which combination is effecting the outcome.

The goal: to maximize the number of free pairs of points in the cap given the size (number of points) of the cap and its projective dimension.
Observation. All pairs of points of C are free if and only if H_{C} defines a code of minimum distance 5 (or more).

Almost perfect nonlinear and almost bent functions

Construction based on linear codes of distance 5
Start with the parity check matrix H^{*} of a binary linear code of distance 5 defined by an APN function and carefully add columns to it
If z is a newly added column and if a, b, c are three columns of H^{*} such that $a+b+c=z$, then the free pairs $\{a, b\},\{a, c\}$ and $\{b, c\}$ are destroyed.
Add to H^{*} syndromes z that correspond to cosets of weight 3 such that the number of coset leaders is minimized.

- In (Lisoněk, 2006) this was worked out for the Gold function $f(x)=x^{3}$ on $\mathbb{F}_{2^{m}}(\mathrm{BCH}$ codes $)$ When m is odd, Gold functions are AB and van Dam \& Fon-Der-Flaass theorem applies: the number of solutions is always $2^{m}-2$.
- On the other hand, $f(x)=x^{-1}$ is APN for m odd but not AB. Therefore the number of solutions can be as low as roughly $2^{m}-2^{m / 2+1}$, thus yielding a further improvement over the past result.

