

One nice property of the trace function

Let $\mathbb{F}_{2^m}^* := \mathbb{F}_{2^m} \setminus \{0\}$ and let $\operatorname{Tr} : \mathbb{F}_{2^m} \to \mathbb{F}_2$ denote the trace mapping given by:

$$Tr(x) = \sum_{i=0}^{2^{m-1}} x^{2^i} = x + x^2 + \dots + x^{2^{m-1}}.$$

Lemma 1 (KG-PL, 2007). Let m > 1 and let k be such that $gcd(2^{k} - 1, 2^{m} - 1) = 1$. Then for each $a \in \mathbb{F}_{2^m}$ we have $\operatorname{Tr}(a^{1/(2^k-1)}) = 0$ if and only if $a = t^{2^k} + t^{2^k-1}$ for some $t \in \mathbb{F}_{2^m}$.

Kloosterman sums divisible by 3

Definition 1. The **Kloosterman map** is the mapping $K : \mathbb{F}_{2^m} \to \mathbb{Z}$ defined by

$$K(a) := \sum_{x \in \mathbb{F}_{2^m}^*} (-1)^{\mathrm{Tr}(x^{-1} + ax)}$$

Theorem 1 (KG-PL, 2007). Let $m \ge 3$ be odd, and let $a \in \mathbb{F}_{2^m}^*$. Then K(a) is divisible by 3 if and only if $a = t^4 + t^3$ for some $t \in \mathbb{F}_{2^m}$.

Proof. Let $t \in \mathbb{F}_{2^m}$, $t \notin \{0, 1\}$, and consider the elliptic curve

$$\mathcal{E}_t: y^2 + xy = x^3 + a_2x^2 + (t^8 + t^6),$$

where

$$a_2 = \begin{cases} 0 & \text{if } \operatorname{Tr}(t) = 0, \\ 1 & \text{if } \operatorname{Tr}(t) = 1. \end{cases}$$

"⁽" (Proved first by Helleseth and Zinoviev, 1999.)

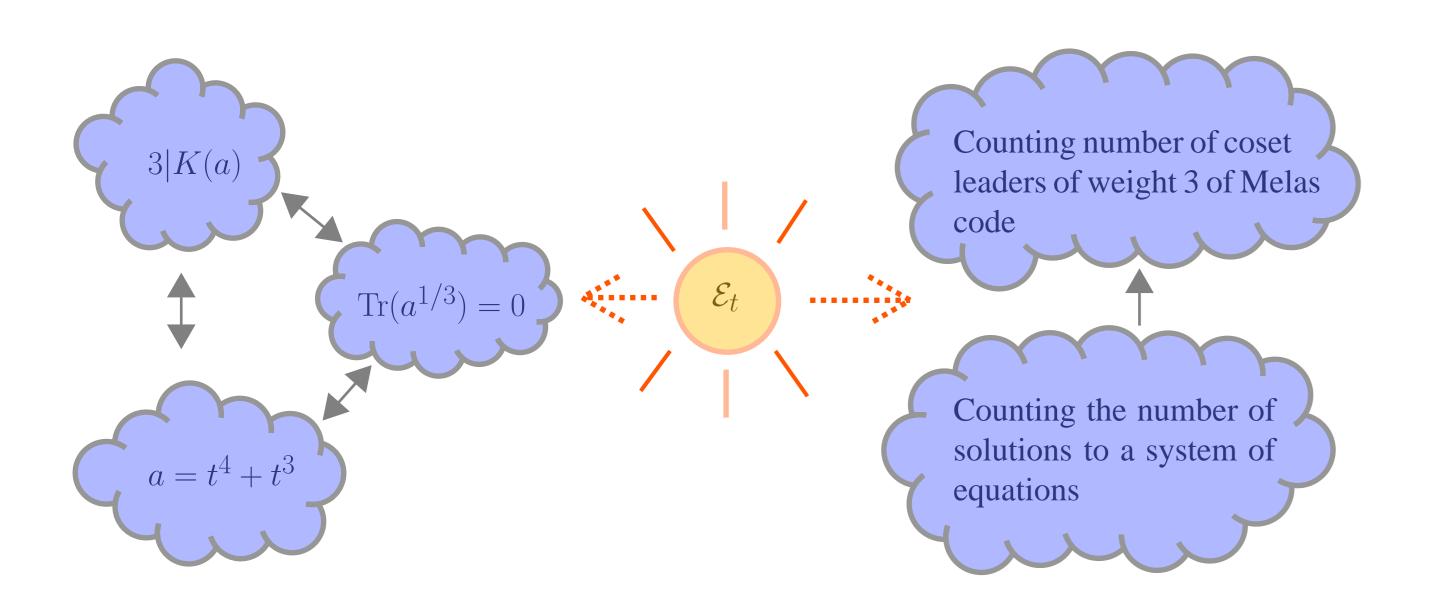
• Using (Lachaud and Wolfmann, 1990) we get

$$#\mathcal{E}_t = \begin{cases} 2^m + 1 + K(t^4 + t^3) & \text{if } \operatorname{Tr}(t) = 0, \\ 2^m + 1 - K(t^4 + t^3) & \text{if } \operatorname{Tr}(t) = 1. \end{cases}$$

- The order of $(t^2 + t : t^4 + t^3 : 1)$ in \mathcal{E}_t is 6, hence $6|\#\mathcal{E}_t$.
- Since $3|(2^m + 1)$, we get $3|K(t^4 + t^3)$.

" \Rightarrow " ... in fact " \Leftrightarrow "

• Charpin, Helleseth and Zinoviev (2007) showed that $3|K(a) \Leftrightarrow Tr(a^{1/3}) = 0$ • Set k = 2 in $\operatorname{Tr}(a^{1/(2^k - 1)}) = 0 \Leftrightarrow a = t^{2^k} + t^{2^k - 1}$.



On Kloosterman Sums Divisible by 3 Kseniya Garaschuk, Petr Lisoněk

{kgarasch,plisonek}@sfu.ca

Counting Coset Leaders for the Melas code

Definition 2. *H* is called a parity check matrix for a linear code *C* if $x \in C \iff Hx^T = \mathbf{0}$. Hx^T is the syndrome of x.

Note that $\mathbb{F}_{2^m} \simeq \mathbb{F}_2^m$, and let α a primitive element of \mathbb{F}_{2^m} , then the standard parity check matrix of the Melas code \mathcal{M}_m is

 $\mathcal{H}_M = \begin{pmatrix} \alpha & \dots & \alpha^i & \dots & \alpha^{2^m - 1} \\ \alpha^{-1} & \dots & \alpha^{-i} & \dots & \alpha^{-(2^m - 1)} \end{pmatrix}.$

Our goal: find the number of coset leaders for a coset of \mathcal{M}_m of weight 3 corresponding to a given syndrome $(a, b)^T \in \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ produced by \mathcal{H}_M .

If $a \neq 0$, assume w.l.o.g. that a = 1 and we'll be led to counting the number of solutions to the following system of equations over $\mathbb{F}_{2^m}^*$:

$$\begin{cases} u + v + w = 1\\ u^{-1} + v^{-1} + w^{-1} = r \end{cases}$$
(*)

where $r \in \mathbb{F}_{2^m}$ is a fixed constant.

Theorem 2 (KG-PL, 2007). Let $r \in \mathbb{F}_{2^m} \setminus \{0, 1\}$. The number of solutions over $\mathbb{F}_{2^m}^*$ of (*) is an integer T such that

• $T \in [2^m + 1 - 2^{m/2+1} - 6, 2^m + 1 + 2^{m/2+1} - 6]$ • 6 divides T.

Conversely, each T satisfying these two conditions occurs as the number of solutions for at least one $r \in \mathbb{F}_{2^m} \setminus \{0, 1\}$.

Idea for the proof. We eliminate w and homogenize as u = U/Z, v = V/Z. Next we apply the substitution

$$\begin{cases} r = 1 + \frac{1}{t}, \\ U = \frac{1}{t}x + (t+1)z, \\ V = \frac{1}{t^2}(y + sx) + (t^2 + t) \\ Z = \frac{t+1}{t^2}x + (t+1)z. \end{cases}$$

Note: $r \in \mathbb{F}_{2^m} \setminus \{0, 1\}$ implies $t \in \mathbb{F}_{2^m} \setminus \{0, 1\}$.

We obtain the same curve \mathcal{E}_t as before!

Counting the points. A lot of technical calculations show that exactly 6 points on \mathcal{E}_t do not produce a solution (u, v, w), thus the number of solutions to (*) is $\#\mathcal{E}_t - 6$.

The assumption $r \neq 1$ forces u, v, w to be distinct in any solution (u, v, w) to (*). Thus the number of solutions is divisible by 3! = 6 for each $r \notin \{0, 1\}$ and then so is $\#\mathcal{E}_t$.

By the Hasse Theorem for each $r \in \mathbb{F}_{2^m} \setminus \{0, 1\}$ the number of solutions to (*) is in

$$[2^m + 1 - 2^{m/2+1} - 6, 2^m + 1 + 2^{m/2}]$$

The proof in the other direction relies heavily on Lachaud and Wolfmann resuls. **Theorem 3** (KG-PL, 2007). Let N(k) denote the number of those $r \in \mathbb{F}_{2^m} \setminus \{0, 1\}$ for which the number of solutions to (*) is equal to k. Then for each $l \in \mathbb{N}$ we have $N(2^m-5+l) = N(2^m-5-l)$, that is, the values N(k) are symmetric about $k = 2^m - 5$.

Special cases. Cases a = 0 or $r \in \{0, 1\}$ are easily doable but not interesting.

$$\binom{m-1}{2^m-1}$$

)z,

 $2^{2+1} - 6] \cap 6\mathbb{Z}.$

Applications in statistical experimental designs

Caps with many free pairs of points

- A cap in PG(n, 2) is a set C of points such that no three of them are collinear.
- Points of C are columns of the parity check matrix H_C for a code of minimum distance 4.
- We say that $\{s, t\} \subset C$ is a free pair of points if $\{s, t\}$ is not contained in any coplanar quadruple of C.

Caps in statistics. In experimental design terminology caps and free pair of points are called fractional factorial designs and clear two-factor interactions, respectively. Given a coplanar quadruple of points in a cap, say $\{a, b, c, d\}$, in the analysis of an experiment it is impossible to distinguish between the two-factor interaction of $\{a, b\}$ and the two-factor interaction of $\{c, d\}$ and hence impossible to say which combination is effecting the outcome.

The goal: to maximize the number of free pairs of points in the cap given the size (number of points) of the cap and its projective dimension.

Observation. All pairs of points of C are free if and only if H_C defines a code of minimum distance 5 (or more).

Almost perfect nonlinear and almost bent functions

binary code defined be the parity check matrix

$$\mathcal{H}_f = \begin{pmatrix} 1\\ f(1) \end{pmatrix}$$

Then f is almost perfect nonlinear (APN) if and only if d = 5.

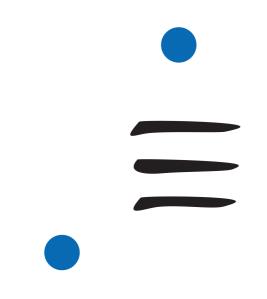
if and only if the system

$$\begin{cases} u + \\ f(u) + \end{cases}$$

has q - 2 or 3q - 2 solutions (u, v, w) for every (a, b), where $q = 2^m$. If so, then the system has 3q-2 solutions if b = f(a) and q-2 solutions otherwise.

Construction based on linear codes of distance 5

- Start with the parity check matrix H^* of a binary linear code of distance 5 defined by an APN function and carefully add columns to it.
- If z is a newly added column and if a, b, c are three columns of H^* such that a + b + c = z, then the free pairs $\{a, b\}$, $\{a, c\}$ and $\{b, c\}$ are destroyed.
- Add to H^* syndromes z that correspond to cosets of weight 3 such that the number of coset leaders is minimized.
- In (Lisoněk, 2006) this was worked out for the Gold function $f(x) = x^3$ on \mathbb{F}_{2^m} (BCH codes). When m is odd, Gold functions are AB and van Dam & Fon-Der-Flaass theorem applies: the number of solutions is always $2^m - 2$.
- On the other hand, $f(x) = x^{-1}$ is APN for m odd but not AB. Therefore the number of solutions can be as low as roughly $2^m - 2^{m/2+1}$, thus yielding a further improvement over the past result.



Theorem 4 (Carlet, Charpin and Zinoviev, 1998). Let $f : \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$, f(0) = 0. Let C_f be the $\left(\begin{array}{cccc} \alpha & \alpha^2 & \cdots & \alpha^{2^m-1} \\ f(\alpha) & f(\alpha^2) & \cdots & f(\alpha^{2^m-1}) \end{array}\right).$ **Theorem 5** (van Dam and Fon-Der-Flaass, 2003). A function $f : \mathbb{F}_2^m \to \mathbb{F}_2^m$ is almost bent (AB)

$$\begin{array}{rcl} v &+ w &= a \\ f(v) &+ f(w) &= b \end{array}$$