Computing Characteristic Polynomials ovér

Simon Lo Michael Monagan Allan Wittkopf

Introduction Complexity

Suppose thaA = (a; ;) IS an x n integer matrix anda; ;| < B™.

A bound forS' is n!B™", therefore, under reasonable assumptions, length of the
determinant ofA is O(mn) baseB digits, so we’ll need)(mn) machine primes.

We have:

We present a modular algorithm for computing the charac-
teristic polynomial of an integer matrix. The computation
modulo each prime is done using the Hessenberg algorithm.
It iIs Implemented in C and the rest of the algorithm Is Im-
plemented in Maple. We compare three implementations for

arithmetic ovelZ, : 32-bit integers, 64-bit integers, and also
double precision floats. The best results use floats!

Modular Algorithm

Input: Matrix A € Z2™"*"
Output: Characteristic polynomial(x) = det(zI — A) € Z|x|

1.Compute a bound' larger than the largest coefficientafr).
2.Choose machine primeg,, ps, . . ., p, such thaf [._, p; > 2.
3.fori=1totdo

(a)A; — A mod p;.

(b) Computer;(x) — the characteristic polynomial &, overZ,, via the
Hessenberg algorithm.

4.Apply the Chinese remainder theorem:
Solvec(z) = ¢;(x) (mod p;) for c(x).

Hessenberg Algorithm

Recall that a square matril = (m; ;) is in upper Hessenberg form if
m;; = 0 forall+ > 75 4+ 2, In other words, the entries below the first
subdiagonal are zero.

/7711,1 mi2 M3 -+ Mipn—2 Mip-1 Min \
mo1 Moo M3 -+ Moap—2 MMop-1 Moy
0 mgomsz--- M3p2 M3p_1 M3y
O O m473 ce m4,n—2 m4,’n—1 m4,n
0 0 0 - Mp—-1n—2 Mp—-1n-1 Mnp—-1n

\ o 0 0 --- 0 Mpp1 mnn)

The Hessenberg algorithm consists of the following two parts:

1.Reduce the matrid € Z;*" into the upper Hessenberg form using a
series of row and column operations4n, while preserving the char-
acteristic polynomial (known as similarity transformations.) BelBw,
denotes the'th row of M andC; the 5'th column of M.

for j =1ton —2do
search for a nonzero entry; ; wherej +2 <i <n
If foundthen
doR,; « Rj+1 andC,; « Cj+1 If M1, = 0
for k=j5+2tondo
(reduce usingn;.; ; as pivot)
U= Mg My
Rk A Rk — uRj+1
Cj— G +uCy
else
first 7 columns ofM Is already In upper Hessenberg form

2.The characteristic polynomialz) = p,.i1(z) € Z,|x| of the upper

Hessenberg form can be efficiently computed from the following re-

currence fopy(x) using computations i, |z| :

1 k=1
k—1 1
Pr(T) = { (@ = mip)pe(@) = 2 (I mja) migpi(z) 1<k <n+l

i—1 j—1

NSERC

o
y
SE—

e Cost of reducing the” entries inA modulo one prime i®(mn?).

e Cost of computing the characteristic polynomial modulo each prima the
Hessenberg method (3(n°).

e Cost of a classical method for the Chinese remainder algorithitrigmn)?).

Total complexity:O(mnmn? + mnn’® + n(mn)?) = O(m*n’ + mn*).
In contrast, the Berkowitz algorithm, the algorithm that Maple uses, has com-
plexity O(n*(mn)?), which reduces t@®(n°m) if the FFT is used.

Timings

The following Is set of timings (in seconds) for a 364 by 364 sparse matrix
arising from a combinatorial construction. Rows 1-8 below are for the modular
algorithm using different implementations of arithmetic #y. The accelerated
floating point versions using 25-bit primes generally give the best times.

\ersions | Xeon | Opteron AXP2800 Pentium M Pentium 4
2.8 GHz 2.0 GHz 2.08 GHz 2.00 GHz 2.80 GHz
64int 100.7 1074 —.- —.- —.-
32int 66.3 /3.0 76.8 35.6 57.4
new 32int 49.7 54.7 156.3 25.5 39.6
fmod 29.5 32.1 33.0 35.8 81.1
trunc 67.8 /3.7 |69.6 88.5 110.6
modtr 56.3 62.5 59.5 81.0 82.6
new fmod 11.0 11.6 [14.5 15.2 28.8
fLA 17.6 19.9 21.9 26.2 27.3
Berkowitz |2053.6 2262.6 —.- —.- —.-

Explanations of the different versions:

64int The 64-bit integer version is implemented using theg long intdatatype in C, or
equivalently thanteger[8] datatype in Maple. All modular arithmetic first executes the corre-
sponding 64-bit integer machine instruction, then reduces the resulprnedause we work
in Z,,. We allow both positive and negative integers of magnitude lessithan

32int The 32-bit integer version is similar, but implemented usingading int datatype in C,
or equivalently thenteger[4] datatype in Maple.

new 32int This is an improved2int, with various hand/compiler optimizations.

fmod This 64-bit float version is implemented using thmubledatatype in C, or equivalently
thefloat[8] datatype in Maple. 64-bit float operations are used to simulate integer operations.
Operations such as additions, subtractions, multiplications are followed by a Galbtig)to
reduce the results magd since we are working 1Z,,. We allow both positive and negative
floating point representations of integers with magnitude lessjhan

trunc This 64-bit float version is similar to above, but ugamc() instead offmod() To
computeb < a mod p, we first compute «— a — p x trunc(a/p), thenb — cif ¢ # +p, b «— 0
otherwise. The trunc function rounds towards zero to the nearest integer.

modtr A modifiedtrunc version, where we do not do the extra check for equality-toat
the end. So to compute«— a mod p, we actually computé < a — p x trunc(a/p), which
results in—p < b < p.

new fmod An improvedfmod version, where we have reduced the number of tifnasd()
Is called. In other words, we reduce the results maahly when the number of accumulated
arithmetic operations on an entry exceeds a certain threshold. In order to allow this, we are
restricted to use 25-bit primes. We call this the operation count acceleration.

fLA An improvedtrunc version using operation count acceleration. It is the default used In
Maple’s LA:Modular routines.

MITACS, NSERC

Computational Algebra Group

Centre for Experimental and Constructive Mathematics
Department of Mathematics

Simon Fraser University

