
Computational Algebra Group
Centre for Experimental and Constructive Mathematics
Department of Mathematics, Simon Fraser University

Strongly Connected Blocks
The use of the strongly connected blocks was motivated by the following question:
For what matrix structures can we compute the characteristic polynomial quickly?

Consider a matrix of the form

A =

h 0 g 0
z d y c
f 0 e 0
x b w a

If we permute rows 1,4 and columns 1,4, we would get a upper triangular matrix,
where the computation of the characteristic polynomial (and also determinant) will be
quick. One can show that simultaneous row and column interchanges do not modify
the characteristic polynomial.

In order to apply the above observation, we need to efficiently compute the permuta-
tion that would make the matrix block upper triangular.

Let G be a directed graph withn vertices andm edges such that vertexj is adjacent
to vertexi iff Aij 6= 0. The strongly connected components ofG, which can be
determined inO(n + m) time, correspond to the strongly connected blocks ofA.

> Q[‘+‘],Q[‘-‘],Q[‘ * ‘],Q[‘0‘],Q[‘1‘] := ‘+‘,‘-‘,‘ * ‘,0,1:
> Q[‘=‘] := proc(a,b) evalb(a=b) end proc:
> A := Matrix([[8,0,7,0],[26,4,25,3],[6,0,5,0],[24,2,23,1]]);

8 0 7 0
26 4 25 3
6 0 5 0
24 2 23 1

> k,B := StronglyConnectedBlocks[Q](A);

0, [

[
8 7
6 5

]
,

[
4 3
2 1

]
]

Quotient Rings
We have also written a Maple package for computing in polynomial quotient rings.
Below we constructQ[x, y, z]/〈x2 + y, z3 − x, xy2 − 2〉 and test whether this domain
is a field, before computing a determinant.

> with(QuotientRings);
> Q := QuotientRing(xˆ2+y, zˆ3-x, x * yˆ2-2);

Q := Q[x, y, z]/〈x2 + y, z3 − x, xy2 − 2〉

> IsField(Q);

true

> A := Matrix([[x * zˆ2 + 1, yˆ2 + x], [x * y-2, x+z+5]]);

A :=

[
xz2 + 1 y2 + x
xy − 2 x + z + 5

]
> d := Determinant[Q](A);

5 + 3x + z − z2y + 5z2x − 3y + 3y2

The package can also perform computations over an integral domain. It includes an
exact division algorithm, and an algorithm to simplify fractions which we illustrate.

> Q := QuotientRing(x * z-yˆ2, x-y-1);

Q := Q[x, y, z]/〈xz − y2, x − y − 1〉

> IsField(Q), IsIntegralDomain(Q);

false, true

> GaussianElimination[Q](A); 1
z + 1

z2 + z − y + 1
0 1

Introduction
Our goal is to do linear algebra computations over arbitrary rings and fields. We
have written a Maple package,GenericLinearAlgebra, that implements the following
commands:

> with(GenericLinearAlgebra);

[BareissAlgorithm,BerkowitzAlgorithm,CharacteristicPolynomial,

Determinant, GaussianElimination, GenericCheck, HermiteForm,

HessenbergAlgorithm, HessenbergForm,LinearSolve, MatrixInverse,

MatrixMatrixMultiply, MatrixV ectorMultiply, MinorExpansion,NullSpace,

RREF,ReducedRowEchelonForm, SmithForm, StronglyConnectedBlocks]

The algorithms in this package are coded in such a way as to allow the user to define
a field, Euclidean domain, integral domain, or commutative ring over which the com-
putations take place.

Constructing a Domain
To demonstrate, we will constructGF(16) asZ2[x]/〈x4 + x + 1〉 as a table of Maple
constants and procedures. One can also use a Maple module.

> f := xˆ4+x+1:
> GF16[‘-‘] := proc(a,b) a-b mod 2 end:
> GF16[‘+‘] := proc() add(i,i=[args]) mod 2 end:
> GF16[‘ * ‘] := proc() Rem(mul(i,i=[args]),f,x) mod 2 end:
> GF16[‘/‘] := proc(a,b) local q; Gcdex(b,f,x,’q’) mod 2:

Rem(a* q,f,x) mod 2; end:
> GF16[‘=‘] := proc(a,b) evalb((Rem(a-b,f,x) mod 2)=0) end:
> GF16[‘0‘] := 0:
> GF16[‘1‘] := 1:

This domain can now be used with GenericLinearAlgebra. Below we solve a linear
system overGF(16) and check the result. The domain is passed as an index to each
command of the package.[

x3 + x + 1 x3 + x2 + x
x2 + x x3

]
X =

[
1

x3 + 1

]
> A := Matrix([[xˆ3+x+1, xˆ3+xˆ2+x], [xˆ2+x, xˆ3]]):
> B := Vector([1,xˆ3+1]):
> X := LinearSolve[GF16](A,B);

X :=

[
x + 1

x

]
, []

> MatrixVectorMultiply[GF16](A,X[1]);[
1

x3 + 1

]

Coding Style
To illustrate how the routines are coded, we show the source code for matrix–matrix
multiplication.

MatrixMatrixMultiply := proc(A::Matrix, B::Matrix)
local D, n, p, m, C, i, j, k;

D := GenericCheck(procname,MatrixMatrixMultiplyOperations);
if op(1,A)[2] <> op(1,B)[1] then error end if;
n, p := op(1,A);
m := op(1,B)[2];
C := Matrix(n,m);
for i to n do

for j to m do
C[i,j] := D[‘+‘](seq(D[‘ * ‘](A[i,k], B[k,j]), k=1..p))

end do
end do;
C

end proc

Simon Lo Michael Monagan Roman Pearce

Generic Linear Algebra and Quotient Rings
in Maple

